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A B S T R A C T

With the fast improvement of machine learning, reinforcement learning (RL) has been used to automate human
tasks in different areas. However, training such agents is difficult and restricted to expert users. Moreover, it
is mostly limited to simulation environments due to the high cost and safety concerns of interactions in the
real-world. Demonstration Learning is a paradigm in which an agent learns to perform a task by imitating
the behavior of an expert shown in demonstrations. Learning from demonstration accelerates the learning
process by improving sample efficiency, while also reducing the effort of the programmer. Because the task
is learned without interacting with the environment, demonstration learning allows the automation of a wide
range of real-world applications such as robotics and healthcare. This paper provides a survey of demonstration
learning, where we formally introduce the demonstration problem along with its main challenges and provide a
comprehensive overview of the process of learning from demonstrations from the creation of the demonstration
data set, to learning methods from demonstrations, and optimization by combining demonstration learning with
different machine learning methods. We also review the existing benchmarks and identify their strengths and
limitations. Additionally, we discuss the advantages and disadvantages of the paradigm as well as its main
applications. Lastly, we discuss the open problems and future research directions of the field.
1. Introduction

The demand for intelligent systems that mimic human behavior
increases. Future directions in artificial intelligence focus on replacing
humans with machines that replicate the desired behavior more consis-
tently. Notable examples include self-driving vehicles [1] and surgical
robots [2]. This progress is driven by continuous advancements in the
area of artificial intelligence, with increasingly complex problems being
solved each year.

Emulating human behavior implies replicating a sequence of actions
that a human would take in various situations. The human behavior can
be recorded in the form of demonstration data sets, which are then used
to train models to replicate the behavior by selecting the appropriate
action based on the current state of the agent and the environment.
Solving this problem entails learning the correct mapping between
states and actions. This mapping is known in computer science as a
policy, a function that selects an action based on the current state. Tra-
ditional programming approaches specify the action for every possible
state. Moreover, such algorithms do not scale well to high-dimensional
environments or continuous action spaces, because specifying the ideal
action for all possible state conditions is tedious and computationally
impractical. Additionally, these approaches require expertise in the
specific area as well as programming knowledge, making them costly.
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Because of this, machine learning (ML) techniques offer a solution
to automatically learn policies from data, with Reinforcement Learning
(RL) being a common method. In RL, the agent learns the policy
through trial-and-error interactions with the environment. After each
interaction, the agent receives feedback and adjusts its policy accord-
ingly. The agent often learns super-human policies [3], often achieving
the task’s goals by performing actions that would be impossible or
unlikely for a human. While this behavior can be advantageous for
maximizing performance, it can be disadvantageous if the goal is for the
agent to behave naturally. A clear drawback of reinforcement learning
approaches is their need for a large number of interactions. Because
the agent learns from failure and attempts random actions, the learning
process can be unsafe in real-world environments, posing risks to the
agent and its surroundings. This limitation hinders the application of
RL in fields like robotics and healthcare. Additionally, reinforcement
learning is highly data-inefficient, requiring many interactions to con-
verge due to the need for exploration. Despite the significant progress
and potential of deep RL, its applications remain largely confined to
video games and simulations.

For these reasons, demonstration learning is an appealing alter-
native to reinforcement learning. In [4], the authors proposed an
off-policy RL algorithm that can learn to play Atari games from image
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data. Two years later, AlphaGo [5] trained the first computer agent
capable of beating a professional Go player. In such cases, the agent has
access to a data set of interactions with the environment performed by
an expert teacher. The agent learns the policy from the demonstrated
state–action pairs present in the data set. The goal of demonstration
learning is to learn complex policies, akin to RL, but from recorded
data, similar to supervised learning. By providing examples of suc-
cessful actions, the need for the agent to try incorrect actions during
an exploration phase is avoided. Consequently, the agent remains safe
during the learning process because it does not have to interact with
the environment directly. Additionally, demonstrations ensure that the
agent learns the desired behavior exhibited in the data set, allowing it
to avoid local minimum and converge faster than with reinforcement
learning.

The primary disadvantage of demonstration learning is that the
agent is entirely dependent on the demonstrations for learning. The
demonstrations must cover the state and action spaces for the agent to
learn the task effectively. Depending on the task, this coverage can be
difficult and expensive due to the size of both spaces. Demonstration
learning methods attempt to generalize to unseen states. Although
demonstration learning methods attempt to generalize to unseen states,
the data is not i.i.d., making generalization challenging. If the agent
encounters states outside the distribution of the data set, it is likely to
fail, with potentially serious consequences in real-world applications.
Therefore, the demonstration learning methods try to mitigate the
distributional shift between the learned distribution and the data set’s
distribution, which is still an open problem. Additionally, recording
demonstrations performed by a human requires capturing the state–
action pairs, showcasing good behavior, and covering various scenarios.
Demonstrations can suffer from sensor noise, inaccuracies, or incon-
sistencies in the demonstrator’s actions. Consequently, demonstration
learning approaches avoid directly copying the demonstrated behavior
and instead attempt to generalize to non-demonstrated trajectories.

The use of demonstration data sets is a key differentiator among
demonstration learning methods. Utilizing demonstrations reduces the
programming overhead, making these methods accessible to
non-experts. As a result, interest in this area has grown exponentially
due to its significant potential. Once a policy is learned from demon-
strations, it can be further refined through online interactions via RL,
with the advantage that the initial policy is safer than a randomly
initialized RL policy. In [3], an agent is pre-trained on demonstration
data such that the convergence and its online interactions are safer.
Later, [6] proposed an algorithm to learn solely from demonstrations,
causing the field to gain traction. Demonstration learning is not limited
to policy learning, the demonstrations can be used to learn a dynamics
model, which allows the agent to collect new transitions and learn
through online RL without having to interact with the environment.
Alternatively, Inverse Reinforcement Learning (IRL) can utilize demon-
strations to learn a reward function, which is often challenging to
design in high-dimensional RL applications.

The paradigm of teaching robots through demonstrations emerged
in the 1980s and has since been considered the future of robotics [7,8].
Over the years, this approach has been used to teach a wide range of
tasks to various types of robots. Applications include aerial and ground
navigation [9], video games [3], and controlling different kinds of
robots, from manipulators [10] to humanoids [11]. The advent of deep
learning has exponentially increased research interest in this area over
the past two decades, leading to a significant rise in publications.

This rapid growth has resulted in numerous surveys on the topic.
Early surveys reviewed the initial history of the paradigm and early
attempts to teach robots from demonstrations. One such survey pro-
vided an overview of demonstration learning and defined the problem
using four core questions for the field: how, what, when, and whom
to imitate [12]. In a subsequent survey [13], the authors discussed
various design choices and proposed a categorization for the field.

Later, [14] focused on reviewing artificial intelligence methods used
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to estimate policies. Another survey [15] reviewed recent research and
development, with a focus on demonstrating behaviors to assembly
robots and extracting manipulation features. [16] provided a compre-
hensive review of inverse reinforcement learning. In [17], the authors
gave an overview of various machine-learning methods, highlighting
their advantages and disadvantages. Following this, [18,19] reviewed
offline reinforcement learning methods. The timeline of these published
surveys is represented in Fig. 1.

Despite the surveys mentioned above aiming to standardize termi-
nology, the terms used in recent publications remain diverse. Terms
such as demonstration learning, learning from demonstrations, imita-
tion learning, behavioral cloning, and offline reinforcement learning
are commonly used to describe the same paradigm. For consistency,
this survey will use the term ‘‘demonstration learning’’ to refer to
this paradigm. Given the rapid growth of the field, there is a need
for a new comprehensive survey. This survey provides an overview
of the steps required to learn from demonstrations and the various
methods employed by researchers at each step. The reviewed literature
encompasses a wide range of applications. The survey explains each
step in a general manner, making it applicable to most tasks.

The following sections are organized as follows: Section 2 presents
a formal definition of the demonstration learning problem. Section 3
discusses methods for collecting demonstration data and creating data
sets. Section 4 explains the learning methods available from the demon-
stration data. In Section 6, we present the benchmarks available to
evaluate demonstration learning methods. Section 7 lists the main
applications of demonstration learning, followed by a discussion of the
advantages and disadvantages of the paradigm in Section 8. Finally,
Section 9 explores future research directions in demonstration learning,
concluding with a summary in Section 10.

2. Problem definition

This section explains the demonstration learning problem and sev-
eral relevant concepts. The overall sequence of steps in demonstration
learning is illustrated in Fig. 2. The first step involves creating the
demonstration data set, which requires selecting the demonstrator, the
demonstration technique, and the data representation. The demon-
strations can be generated by the agent itself using teleoperation,
kinesthetic, or shadowing demonstration techniques. These techniques
are categorized as direct demonstrations because the agent itself per-
forms them. Alternatively, a teacher, either a human or a robot not
acting as the agent, can perform the demonstrations. These are known
as indirect demonstrations, as the learning agent does not perform
them. In these techniques, demonstrations are recorded via observa-
tions or sensors on the teacher, with the captured information mapped
to a format the learning agent can use.

Next, the agent learns through demonstration learning using the
demonstration data set. The learning methods can be categorized by
their objective, most commonly to learn a policy function. However,
demonstration learning can also be used to learn a reward function
through IRL or a dynamics model, both of which can then be applied
in standard RL applications. Additionally, demonstration learning can
be used to learn a generator, or a discriminator through Generative Ad-
versarial Imitation Learning (GAIL), a sequence model, and seamlessly
integrated with apprenticeship learning.

Subsequently, the learned model can be further enhanced using
optimization techniques such as online interactions with RL and active
learning. The evaluation of demonstration learning methods is usually
quantitative, though some applications may require qualitative assess-
ment. Each of these steps is discussed in more detail in their respective
sections.

An agent is an entity that autonomously interacts within an en-
vironment towards achieving or optimizing a goal [20]. It receives
information from the environment through its sensors and interacts

with the environment using its actuators, based on its policy.
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Fig. 1. Timeline of surveys. General demonstration learning surveys are presented on the right side, while surveys specific to a sub-area or application are presented on the left
side.
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Fig. 2. Demonstration learning flowchart.

Demonstration learning is a mixture of supervised learning and
reinforcement learning. In supervised learning, the agent receives the
labeled training data and learns an approximation to the function that
produced the data. In reinforcement learning, the agent must collect
interaction data to learn from, by interacting with the environment
through trial and error. In demonstration learning, the training data
is a set of environment interactions collected beforehand by a teacher
executing a task. The goal of demonstration learning is to learn a task
from demonstrated examples performed by an expert demonstrator and
recorded in a data set.
3 
Demonstration learning expands from the RL paradigm commonly
defined as a Markov Decision Process (MDP), formulated by the tuple
⟨𝑆,𝐴, 𝑃 , 𝛥0, 𝑅, 𝜆⟩ [21]. An MDP is a mathematical formulation that
enables the creation of theoretical statements and proofs in RL, where
𝑆 is the set of the possible environment states, 𝑠 ∈ 𝑆, and 𝛥0 denotes
he initial state distribution. At each state, the agent can choose an
ction 𝑎 ∈ 𝐴 from the set of possible actions. Acting changes the
tate of the environment. The mapping between states through the
ctions is defined by the state transition function 𝑃 (𝑠𝑡+1 ∣ 𝑠𝑡, 𝑎𝑡) ∶
𝑆 × 𝐴 → 𝑆. The Markov property determines that the transition
function completely defines the dynamics of the environment. That is,
the probability of state 𝑠𝑡+1, only depends on the current state 𝑠𝑡 and
selected action 𝑎𝑡, regardless of past transitions. The policy 𝜋 ∶ 𝑆 → 𝐴
is a function that selects an action given a state of the environment.
A more common definition is to formulate the policy as a probability
distribution 𝜋(𝑎𝑡 ∣ 𝑠𝑡), where the policy returns the probability of
taking action 𝑎𝑡 given the agent is at the current state 𝑠𝑡. The correct
selection of the action for any given state is what allows the agent
to perform the task. After interacting with the environment, the agent
receives a reward 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1), which indicates the quality of the
interaction. In RL, the policy is optimized to maximize the expected
future rewards E[∑∞

𝑡=0 𝜆𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)]. A trajectory is a sequence of 𝐻+1
tates and 𝐻 actions and rewards 𝜏 = (𝑠0, 𝑎0, 𝑟0,… , 𝑠𝐻 ), where 𝐻 is the
pisode’s horizon, which may be infinite in the case of non-episodic
nvironments. With these definitions, the probability density function
or a given trajectory 𝜏 under the policy 𝜋 is 𝜌𝜋 (𝜏) = 𝛥0(𝑠0)

∏𝐻−1
𝑡=0 𝜋(𝑎𝑡 ∣

𝑡)𝑃 (𝑠𝑡+1 ∣ 𝑠𝑡, 𝑎𝑡). Lastly, 𝜆 is the discount factor.
In some settings, we do not have access to the full state information

f the environment and have to work with observations 𝑜𝑡 ∈ 𝑂. This
ormulation is named Partially Observable MDP (POMDP), defined by
he tuple ⟨𝑆,𝐴,𝑂, 𝑃 , 𝛥0, 𝐸, 𝑅, 𝜆⟩, where 𝑂 is the set of observations and
(𝑜𝑡 ∣ 𝑠𝑡) is the function that maps states to observations. To over-

ome the limitations of learning from observations, methods combine
onsecutive past observations to supply the policy with time-varying
nformation, such as velocity and direction.

One of the main reasons behind the success of machine learning
ethods is the usage of large data sets. However, in RL the data set is

ollected during training and can be expensive and unsafe to collect in
he real-world.

In demonstration learning, the agent has access to a data set of 𝑁
emonstrations 𝐷𝑑𝑒𝑚𝑜 = {𝜏𝑖, 𝑖 ∈ {0,… , 𝑁 − 1}}. Each demonstration
s the sequence of visited states and the respective actions chosen
y the expert demonstrator 𝜏𝑖 = (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑡 ∈ {0,… , 𝐿 − 1}), where

is the length of the sequence. The policy is estimated from the
ehaviors shown in the demonstration data set. The agent learns by
ncreasingly better imitating the behavior of the teacher represented
n the demonstrations. Therefore, the behavior of the agent should
onverge to a working and intended behavior.
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Behavior cloning (BC) is the family of methods where the pol-
icy is trained to output the demonstrated action for a given state.
Hence, the problem becomes a classification problem for discrete action
spaces or a regression problem for continuous action spaces. However,
the quality of the learned behavior is limited to the ones present in
the demonstrations. Because of this, demonstrations can be used to
formulate a reward function. This family of methods is called IRL.
Here, the agent is rewarded for how similar the action is to the one
in the data set for a given state. Alternatively, the demonstrations
can include the environment rewards in addition to the states and
actions: 𝜏𝑖 = (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1, 𝑡 ∈ {0,… , 𝐿 − 1}). This family of methods
is named offline RL because the agent has access to the interaction
data in an offline manner. Here the ideal policy 𝜋∗ is estimated by

aximizing the expected accumulated reward for all trajectories 𝜏: 𝜋∗ =
argmax𝜋 E𝜏∼𝜌𝜋 (.)[𝑅𝜏 ], where 𝑅𝜏 =

∑𝑁−1
𝑡=0 𝛾 𝑡𝑟𝑡 is the discounted accumu-

lated reward of trajectory 𝜏 with 𝑁 transitions. Most methods estimate
a state-value function to optimize the policy: 𝑉 𝜋 (𝑠𝑡) = E𝜏∼𝜌𝜋 (.∣𝑠𝑡)[𝑅𝜏 ],
which maps a state to the expected return when starting from that state.
Similarly, an action-value function 𝑄𝜋 (𝑠𝑡, 𝑎𝑡), maps state–action pairs to
the expected return starting from state 𝑠𝑡, and using action 𝑎𝑡.

Under offline RL, the goal is to use the data sets to generalize instead
of naive imitation learning by finding the good parts of the demon-
strated behavior. Even if the data set has bad behaviors, finding the
good parts would result in an improvement over the demonstrations.
Though distinguishing bad from good behaviors is difficult, offline RL
accounts for long-term consequences of immediate actions through the
value-function, unlike BC.

In the following section, we will delve into the process of creating
a demonstration data set, exploring each step and the various options
available. We will begin by discussing the selection of the demonstra-
tor, followed by an examination of different demonstration techniques
and data representation methods. Additionally, we will address the
primary limitations that affect demonstration data sets, their potential
consequences, and possible solutions.

3. Demonstration data set

The initial step in demonstration learning is creating the demonstra-
tion data set. This data set comprises a series of demonstrations, each
represented as a sequence of state–action pairs. As stated previously,
the data set can include extra information such as the environment’s
rewards for each interaction. The developer has a plethora of design
options for the system. This section outlines the various choices for
designing the demonstration data set, discussing their impacts on the
final design, and comparing their advantages and disadvantages.

The first step is selecting the demonstrator. The next step involves
choosing the demonstration technique, which depends on the type of
demonstrator chosen. Afterward, defining how the data will be stored is
crucial. The data must be usable by the learning agent, ideally mapping
directly to state–action pairs usable by the learner. However, this direct
mapping is not always feasible, and conversion mechanisms may be
required. For example, learning from images requires the extraction
of features, which may be manually-designed or learned. The demon-
strated images are captured from the point of view of the teacher and
may not be directly usable by the learning agent. Challenges that arise
from the differences between the contexts of the demonstrator and the
learner are named correspondence issues by [22]. All these steps are
explored in the following sections.

3.1. Choosing the demonstrator

The demonstrator is the agent responsible for demonstrating the
task. Two choices have to be made regarding the demonstrator: se-
lecting who controls the demonstration and who executes the demon-
stration. The task can be demonstrated by either a human or a robot
different from the learning agent, who controls the demonstration.
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However, through shadowing or teleoperation, a human can control
the learning agent, allowing it to execute the task. The demonstration
techniques will be explored in the following sections. In these cases,
a human teacher controls the demonstration, while the learning agent
executes the demonstration.

The choice of the demonstrator is critical to the success of the
system, as it influences the algorithms that can be used. If the learning
agent performs the demonstrations itself, for example, through tele-
operation, the learner’s state–action spaces will automatically align
with those in the data set. However, if a different agent executes the
demonstrations, the state and action spaces in the demonstrations will
likely need to be mapped to the learner’s corresponding spaces.

3.2. Demonstrator and learner matching

This subsection addresses the alignment of state–action pairs from
the teacher, as represented in the demonstration data set, with the
learner’s state–action pairs, enabling the learner to perform the task.
In [13], the authors defined two types of mappings: record mapping
and embodiment mapping. While these terms are not widely used
in the literature, we adopt them here to help classify the different
demonstration techniques.

Record mapping corresponds to the mapping between the teacher’s
demonstrated state–action pairs and the recorded state–action pairs
in the data set, denoted as (𝑠𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 , 𝑎𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 ) = 𝑚𝑅(𝑠𝑡𝑒𝑎𝑐ℎ𝑒𝑟, 𝑎𝑡𝑒𝑎𝑐ℎ𝑒𝑟).
Embodiment mapping corresponds to the mapping between the state–
action pairs recorded in the data set and the state–action pairs per-
formed by the learning agent, denoted as (𝑠𝑎𝑔𝑒𝑛𝑡, 𝑎𝑎𝑔𝑒𝑛𝑡) = 𝑚𝐸 (𝑠𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 ,
𝑎𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 ). These mappings are represented in Fig. 3. Each mapping
corresponds to applying a conversion function to the input to produce
the output. Importantly, neither mapping alters the information in the
demonstration data set. Instead, they change the data from the context
of the teacher to the context of the agent.

Ideally, the data is recorded by the learning agent, eliminating the
need for any mapping. In such cases, these mappings are equivalent
to using the identity function 𝐼(𝑠, 𝑎). However, there are scenarios
where the demonstrator’s setting cannot be directly recorded or directly
applied to the learner. In these instances, one or both conversion
mappings must be created. For any given problem, each additional
mapping introduces a potential source of errors. Consequently, the
more mappings that are applied, the more challenging it becomes to
accurately translate and reproduce the teacher’s original behavior.

As an example, consider a human teacher demonstrating a task to
a robot using their own body. A camera records these demonstrations
as a series of images. An implicit record mapping is applied to convert
the raw data captured by the camera into these images, as the images
do not fully capture the entire environment. Additionally, the specific
actions performed by the teacher between frames are unknown to the
robot. The robot cannot infer what action was taken by the teacher
to transition from one frame to the next. Therefore, an embodiment
mapping is necessary to generate the state–action pairs that the robot
can use to understand and replicate the demonstrated task.

3.3. Choosing the demonstration technique

In this section, we explore various techniques for acquiring demon-
strations. According to [13], demonstration techniques are categorized
into two groups: demonstration and imitation, based on their need
for embodiment mapping. However, we adopt a simpler categoriza-
tion proposed in [23], which divides demonstration techniques into
indirect and direct demonstrations. In direct demonstration techniques,
the learning agent itself performs the demonstration. Conversely, in
indirect demonstration techniques, an external agent demonstrates the
task.

In the direct category, no embodiment mapping is needed because
the demonstration is performed directly by the target agent. Con-

versely, indirect techniques require embodiment mapping since the
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Fig. 3. Record and Embodiment Mapping as per [13].
Table 1
Categorization of the demonstration techniques.

Direct Indirect

Teleoperation Kinesthetic Shadowing Observation Sensors on Teacher

Mapping No No Record Embodiment and Record Embodiment
Demonstrator Learner Learner Learner Not the learner Not the learner
Data recorded Learner’s internal state Learner’s internal state Learner’s internal state Visual Sensor
demonstration is not performed on the learning agent. Furthermore,
within each category, approaches are grouped based on whether they
require record mapping. This categorization is presented in Table 1.

The demonstration techniques involve choosing how the demonstra-
tion data is provided to the learner. The most common approach is to
have the data available beforehand, allowing the learner to derive a
policy from a pre-existing data set. Alternatively, the data can become
available incrementally during training, leading to ongoing policy up-
dates. These incremental approaches are typically used to refine the
policy based on its performance during training. For instance, in [24],
the agent displays its confidence score for the selected action in a given
state. The teacher can then choose to intervene and demonstrate the
correct action or accept the agent’s action.

[25] discusses techniques that enable a robot to refine its ex-
isting model, focusing primarily on interactive and active learning
approaches. Interactive task learning, proposed in [26], involves the
agent actively learning a task through natural interactions with a
human instructor. The concept of modeling verbal and non-verbal cues
used by the teacher during the teaching process to enhance learning
is explored in [27]. Additionally, the idea of asking for help during
the learning process is examined in [28], where a data-driven method
was developed to estimate the human’s beliefs after receiving a request
and to create better requests that guide people towards providing
useful help. We provide a categorization of the available demonstration
techniques in Table 1.

3.4. Direct demonstration

Direct demonstration consists of techniques where the embodi-
ment mapping is unnecessary because the learning agent performs the
demonstrations. Hence, there is no need to convert the state–action
pairs from the demonstrator’s space to the learner’s space, as they are
inherently the same. However, record mapping may still be required if
the state–action pairs performed by the demonstrator cannot be directly
recorded in the data set.

3.4.1. Teleoperation
Teleoperation is the most direct method for transferring the

teacher’s behavior to the learner. In this setting, the human teacher
operates the learning agent or an agent structurally identical to the
learner. This agent can be a physical or simulated robot or a simulated
agent, such as characters in video games. The state–action pairs of the
demonstration are recorded directly from the learning agent’s sensors.
Because the agent performing the task is structurally identical to the
learner, and the state–action pairs are extracted directly from the
agent’s sensors, neither embodiment mapping nor record mapping is
required.

The main advantage of teleoperation is that it can be easily used in
simulation environments and video games, unlike the other approaches.
Additionally, teleoperation simplifies data collection, facilitating the
development of new methods and benchmarks. However, a significant
downside is that it requires the agent to be manually controllable,
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which limits its applicability to certain problems. This control can be
executed through various interfaces, such as joysticks, graphical user
interfaces, or virtual-reality interfaces. Another disadvantage is that not
all users possess the necessary skills to teleoperate the agent effectively
without extensive training. This need for technical proficiency under-
mines one of the key advantages of demonstration learning, which is
its accessibility to a broader range of users.

Demonstrations using teleoperation have been applied to a wide
variety of applications. For example, in [9,29], data from a robot
helicopter flight, controlled with a joystick, was recorded and used to
train an autonomous agent through RL. For manipulation tasks, [30]
demonstrated how a robotic arm could be trained to change rolls on
a paper roll holder from demonstrations. In [9], a humanoid robot
was teleoperated using Virtual Reality technology, which translated the
operator’s arm and hand motions into those of the robot to generate
demonstration data and develop a manipulation policy. Teleoperation
has also been used in simulated environments. For instance, in [31],
used teleoperation to transfer human skills in Robosoccer to a robot
through demonstration learning. Additionally, [32] involved teleoper-
ating a PR2 robot to touch a red cube on a table to create demonstration
data, which was then used to train the robot to associate movements
with labels and perform a sequence of trajectories based on this labeled
data.

3.4.2. Kinesthetic
Kinesthetic teaching serves as an alternative to teleoperation when

an external mechanism for controlling the agent is not available. In this
approach, the teacher physically manipulates the agent by moving its
joints through the correct positions that enable the agent to perform
the task. Alternatively, the teacher can provide instructions through
speech, where the robot is told specifically what to do. Similar to
teleoperation, demonstration data in kinesthetic teaching is captured
directly from the agent’s sensors, so there is no need for any mapping.
However, the quality of the demonstrations heavily relies on the capa-
bilities of the human teacher. Even with expert demonstrators, the data
obtained through kinesthetic teaching often requires post-processing
techniques to refine the demonstrations.

The applications of kinesthetic demonstrations are similar to those
of teleoperation. However, kinesthetic demonstrations are generally
restricted to physical agents and are primarily used for manipulation
tasks. For example, a learning method for collaborative and assistive
robots based on imitation learning through kinesthetic demonstrations
was applied to a robotic arm in various assistive scenarios [33]. To
extract features from each state for kinesthetic teaching, a system that
captures desired behaviors in the joint space was developed in [34].
Additionally, [35] explores how kinesthetic teaching can be used to
capture demonstrations for modeling reward functions in manipulation
tasks.
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3.4.3. Shadowing
Demonstrations performed through shadowing are performed by the

learning agent. Since the demonstration data is captured through the
agent’s sensors, there is no need for embodiment mapping. However,
the agent performs the task by copying the movements of the teacher
through some form of tracking. There is a record mapping that converts
the actions performed by the teacher to the actions of the learning
agent.

Shadowing has been effectively applied to both humanoid robots
and navigation tasks. In [36], a humanoid robot learns to imitate a hu-
man demonstrator’s arm gestures and is tested on a turn-taking gesture
game. For navigation, a mobile robot learns routes demonstrated by a
teacher in [37].

3.5. Indirect demonstration

Indirect demonstration encompasses techniques where an embod-
iment mapping is necessary. The demonstration data is not captured
directly from the learning agent’s sensors because a different agent
demonstrates the task. Hence, the agent cannot directly apply the
state–action pairs in the demonstration data set.

3.5.1. Observation
In indirect demonstration by observation, a teacher performs the

task while sensors external to the learner capture the demonstrations.
These sensors are often cameras or a camera system, and they may
be complemented by additional sensors on the teacher. During this
process, the learning agent remains a passive observer. The main ad-
vantage of this technique is its straightforward data collection process.
However, it requires both record mapping and embodiment mapping to
transform the captured data into usable state–action pairs for the agent.
Since only image representations of the teacher’s actions are recorded
rather than the actual state–action pairs, record mapping is needed
to convert these images into state–action pairs. Additionally, because
the learning agent does not perform the task, embodiment mapping is
necessary to translate the demonstration data into a format that the
agent can use for learning. This is often accomplished through machine
learning techniques, such as feature extraction or automated conversion
from the teacher’s context to the learner’s context.

While indirect demonstration by observation is the simplest method
for task demonstration, it necessitates both record mapping and embod-
iment mapping, making it less favorable compared to other techniques
when they are viable options. This approach is particularly effective
in settings with high degrees of freedom, where other demonstration
techniques might be difficult to perform. However, it comes with
challenges such as camera-related issues such as occlusions, blurriness,
and noise-that can affect data quality and require extra post-processing
steps.

Demonstration learning through observation is the most versatile
and widely applicable demonstration technique. It has been employed
in various applications, such as teaching a robot to perform assembly
tasks from demonstrations in [38], learning house chores in both
real-world and simulated environments as explored in [39], and ma-
nipulating a piece of cloth to create different shapes in [10]. Early
works teach a robotic arm to balance a pole using demonstrations [40].
In [41], a robot demonstrates a task and transfers its skill through
demonstration learning to a different robot. Moreover, demonstration
learning from observation is frequently combined with other informa-
tion sources beyond just camera data. For instance, [42] demonstrates
how a robot learns to grasp objects by integrating visual observations

with data from a force-sensing glove.

6 
3.5.2. Sensors on teacher
Sensors on a teacher is a demonstration technique where the demon-

strations are recorded from sensors on the teacher such as wearable
devices [43]. In this approach, record mapping is not required because
the data is captured directly from the teacher’s sensors. However,
because the learning agent did not perform the task, the recorded data
cannot be directly used by the agent. This means that an embodiment
mapping is required to convert the teacher’s state–action pairs to
the context of the learning agent. Because of this requirement, these
approaches are used when the learning agent cannot be controlled
to perform the task itself. Otherwise, teleoperation, kinesthetic, or
shadowing techniques should be preferred. Human teachers are com-
monly used to demonstrate a task using their own bodies to train a
humanoid robot. The advantage of using sensors on a teacher over
passive observation lies in the precision of the data collection. Sensors
provide detailed and accurate data about the teacher’s actions, whereas
passive observation requires indirect methods to infer and map the
teacher’s actions for the learner.

In [11], the data from sensors placed on a human is used to derive
joint angles for a humanoid robot, enabling it to learn and perform
reaching and drawing movements with one arm as well as tennis
swings. This approach has also been applied in [44] to teach a biped
robot to replicate human-like walking patterns. Additionally, [45] de-
scribes the use of a custom glove to capture hand position and tactile
information for recording demonstration data performed directly by a
human. The data was then used to obtain object model representations
and optimize the policy to perform the task.

3.6. Data representation

The demonstration data needs to be recorded in a structured way.
The structure is dependent on what technique was used for recording
the demonstration and will determine which algorithms can be used
to train the policy. The state representation is called a feature vector,
which may encompass various types of information, including the
agent’s state, the environment, and individual objects. Due to the high
dimensionality of the environment, it is often impractical to represent
it in its entirety, and it may contain redundant or irrelevant informa-
tion for the learning task. Hence, the selection of features needs to
be adequate and efficient to convey enough relevant information to
estimate a quality policy. The actions performed by the teacher are also
normally included in the demonstrations. However, some approaches
overcome the unavailability of actions in the data set and learn to
infer the action that caused a state transition [46]. Additionally, in
scenarios where the goal is to maximize a reward function, rewards
for each state–action transition can also be part of the data set. Lastly,
supplementary information such as episode termination indicators and
safety constraint violations may be included [47,48].

3.6.1. Raw features
Raw features are the direct outputs from sensors collected during

the demonstration and stored in the data set without any additional
processing. Hence, these features are used in cases where there is no
record mapping. However, the features may inherit noise from the
sensors and may need to be pre-processed. If these features capture all
the necessary information for the task, they can be used directly for
training without further processing.

Such features can be easily obtained in virtual environments such as
simulators or video games. For example, in [3], the agent learns to play
a series of Atari games using state–action observations that are direct
screenshots from the game. However, in the real-world, these features
are often not readily available and typically require additional sensors

to be collected.
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3.6.2. Manually designed features
Manually designed features are extracted using custom-designed

functions tailored to the specific problem at hand. These functions
transform raw sensor data from the demonstration into a more efficient
structure for training the agent. These functions filter out irrelevant and
redundant information, often reducing dimensionality and focusing on
the most useful features for the learning task.

In [49], a robot is trained to imitate human movement from obser-
vations. The authors define key points on the human demonstrator’s
body, and the agent learns to detect motions by identifying changes
in the key points’ locations. In [50], object positions are tracked and
used as features of the demonstrations. For video games, [51] obtains
screenshots of the Mario Bros game and divides them into binary cells,
each signifying if the respective cell contains objects.

3.6.3. Extracted features
Extracted features are obtained from a learned function designed

to process raw sensor data from demonstrations and identify relevant
information for learning. Unlike manually crafted features created by
experts through careful problem analysis, these functions are generated
automatically through a model specifically trained for feature extrac-
tion. Typically implemented as neural networks, these models function
as black boxes, extracting features in ways that are not explicitly
understood by the programmer. Automatic feature extraction models
are particularly useful when task-specific features cannot be identi-
fied through expert evaluation. Therefore, they offer the advantage
of minimizing the need for task-specific knowledge and have broader
applicability, as they can be trained to extract features for a variety of
tasks. Consequently, they allow for the creation of a more streamlined
demonstration learning pipeline.

In [52], deep learning techniques are employed to automatically
extract features for training an agent to play a set of Atari games.
Similarly, [53] demonstrates the use of features automatically extracted
from observations to train a robot for various manipulation tasks.
In [54], an encoder is utilized to extract features from state observa-
tions. Here, the encoder is trained simultaneously with the policy in an
off-policy manner, improving sample efficiency.

3.6.4. Time as a feature
In this approach, demonstrations consist of time-action pairs. Such

features can be applied to tasks where it can be assumed that the
environment’s state depends solely on time. Hence the agent can learn
the ideal action for a specific time interval, and its behavior will always
be optimal. It is assumed that there is a time loop synchronized with a
fixed sequence of environmental states. The overhead of designing such
features and algorithms is reduced tremendously. Furthermore, the
efficiency of such policies will be high while the aforementioned time
synchronization requirements remain the same. The main restriction of
such features is their applicability, since rarely does the state of the
environment depend solely on time.

Other limitations of time-based policies include issues with ro-
bustness and task dependency. Because these policies rely heavily
on a fixed time structure, they are highly sensitive to changes in
the environment that can disrupt time synchronization. Additionally,
time-action pairs are typically specific to a particular task, making it
challenging to adapt or scale these policies for similar tasks. To address
these limitations, [55,56] explore methods for synchronizing differ-
ent demonstration sequences. In their approach, frames from various
demonstration sequences with the same time index are expected to
exhibit similar behavior, representing the same point in the task. The
model is then trained to extract features from these frames, aiming to
generate consistent features for frames with the same timestamp while

differentiating between features from frames at different timestamps.

7 
3.7. Data set limitations

The performance of the policy is directly dependent on the quality
of the information provided by the demonstration data set. In this
section, we explore how various limitations of the data set can affect
the agent’s performance and outline important properties to consider
when designing or utilizing a demonstration data set.

3.7.1. Incomplete data
The demonstration data set represents only a subset of the full

MDP’s distribution. The larger the distribution sample, the easier it is
to generalize and tackle the curse of dimensionality problem. It also
reduces the likelihood of encountering out-of-distribution states and
dealing with the problem of distributional shift. However, collecting
real-world demonstrations that adequately cover the entire MDP is
often challenging and sometimes impossible, particularly in continuous
state and action spaces. If certain states are missing from the demon-
strations, the learner cannot estimate the optimal actions for those
states during policy estimation. This section presents the ways demon-
stration learning approaches tackle missing data points in the data set.
Human-generated demonstrations often produce narrow distributions,
which can exacerbate issues related to out-of-distribution states. To
mitigate these challenges, it is crucial to manage distributional shifts
by ensuring that the agent does not venture beyond the data set’s
distribution. Additionally, another common issue is the non-inclusion
or sparsity of reward signals in the data set. Creating a comprehensive
reward function is often difficult, especially in complex state and action
spaces. Consequently, it is sometimes easier to work with sparse or even
absent rewards, though this approach can make the learning problem
significantly more difficult.

The simplest idea to deal with limited data is to obtain new demon-
strations. In such approaches, as the learner interacts with the system,
it may encounter novel states and request a demonstration from the
teacher for that given state. For instance, [57] proposes a confident ex-
ecution approach, which focuses on learning relevant parts of the task
where the agent identifies the need to request demonstrations. In this
approach, the agent must decide between requesting a demonstration
and executing actions autonomously. As the agent learns the task, it
increases its autonomy, reducing both the teacher’s training time and
workload. In an alternative approach, [24] addresses this problem by
having the agent provide the teacher with a confidence score for its
chosen action. The teacher can then decide whether to intervene and
provide a demonstration or to accept the agent’s action [48,58].

The previous approach requires additional overhead to identify
missing states in the data set and demands extra commitment from the
teacher during the learning process. The alternative approach corre-
sponds to generalizing using the available data. One way to generalize
is to create new data from the existing set. Data augmentation is
often used in machine learning to enlarge the data set and improve
generalization to unseen data. Such techniques can be applied to state
representations to generate unseen data points. In [59,60], different
data augmentation schemes are compared and applied to off-the-shelf
RL algorithms. However, naively applying data augmentation to RL can
cause new problems. The authors of [61] identify pitfalls for naively
applying transformations to RL algorithms and then teach how to
properly use them. Additionally, [62] addresses the instability problem
in RL by estimating the Q-values from an ensemble of agents. Another
approach is to perform stitching, which involves combining portions of
different unsuccessful trajectories to solve a task.

Another approach is to use transfer learning methods and learn from
data of other tasks. In [63], it is shown that in certain conditions, the
challenge of learning from few demonstrations for a given task can be
mitigated by using demonstrations of other, related tasks. Even when
rewards for the host task are either unusable or unavailable, they can
be set to zero to ensure that the learning process remains effective.

Furthermore, performance can be enhanced through the application



A. Correia and L.A. Alexandre Robotics and Autonomous Systems 182 (2024) 104812 
of re-weighting methods to adjust the significance of transitions from
these other tasks.

Alternatively, to generate new data without additional effort from
the teacher, the learner can directly interact with the environment. In
such approaches, the learner is pre-trained on the available demon-
stration data and is then fine-tuned with RL to collect further data.
Since the agent starts with a solid foundation from pre-training, it is
more competent and safer during exploration compared to an agent
trained from scratch through RL alone. However, this method requires
careful balancing between exploring new data and exploiting existing
data for effective policy estimation. Additionally, it requires creating
an exploration policy and a reward function that gives feedback based
on the agent’s actions in various states.

In [3], the agent is pre-trained on demonstration data before in-
teracting with the environment. Then, the agent’s policy is updated
using both the demonstration data and the exploration data. In [64], a
different approach is proposed where two policies are learned simulta-
neously. The primary policy executes the task, while a secondary policy
enforces constraints to prevent the primary policy from taking actions
that could lead to harmful outcomes. Another approach is created
in [65], where a second agent is trained to make the learning of the
main agent as difficult as possible. This adversarial setup creates more
difficult conditions for the main agent during training, resulting in a
policy that is more robust and resilient to various challenges.

Some methods explore the state space by maximizing the entropy
of the visited state distribution [66,67]. In [66], a policy is trained to
explore the state space while estimating the representations. The state
space is clustered, and the policy is rewarded based on the distance
between the visited states and the nearest cluster, thereby encouraging
exploration of less-visited regions. In [67] a world model is estimated
in conjunction with an exploration policy. Here, the policy is rewarded
for maximizing the variance of the predictions of an ensemble of
networks, which promotes exploration by favoring actions that lead
to unpredictable outcomes. In [68,69], address the challenge of safe
exploration by constraining the policy to ensure that it adheres to
pre-defined safety restrictions.

3.7.2. Inadequate data
Most demonstration learning approaches assume that the quality of

the data in the demonstration data set is optimal. However, this often
is not the case. The demonstrated behavior can be sub-optimal, which
in some cases can be intended if the goal is for the policy’s behavior to
appear human. Additionally, demonstration data can suffer from vari-
ous issues such as sensor noise, blurriness, and occlusions. Furthermore,
the data may be redundant or unevenly distributed, which can affect
the learning process. To address these challenges, [70] introduces two
algorithms designed to handle demonstration data corrupted by noise.
These algorithms extract the idea of the expert demonstrator using
Instrumental Variable Regression techniques from econometrics.

Another significant issue is data ambiguity, which occurs when
there is inconsistency in the teacher’s choices, resulting in different
actions being selected for the same state across various demonstrations.
This inconsistency means that a single state is mapped to multiple
different actions in the data set.

Additionally, the data may contain unsuccessful demonstrations.
When these demonstrations are appropriately labeled as unsuccessful
or provide reward information that the policy aims to maximize, they
can enhance the policy’s robustness by guiding the agent to avoid
certain state–action pairs. For example, if the policy is trained to
learn from failed attempts, it can better understand what actions to
avoid in similar situations. However, if unsuccessful demonstrations are
mistakenly treated as successful, as often happens in BC approaches,
they can degrade the quality of the learned policy. In short, the quality
of the learned policy is directly affected by the quality of the data.

Some approaches leverage sub-optimal demonstrations to enhance

generalization and achieve smoother behaviors in the learned policies.

8 
For example, [71], demonstrates how repeated demonstrations are
used to encourage such behavior and smooth the policy. In another
approach, [72] explores how data from multiple teachers can be used
strategically to challenge the learning agent, resulting in a more ro-
bust policy. Some approaches identify inadequate demonstrations and
choose to remove them from the data set before training the policy.
For instance, [73] presents techniques for diagnosing and addressing
sources of inadequacy in the demonstration data. Alternatively, [74]
adopts a more nuanced approach by incorporating both successful and
failed demonstrations. They separate the two types of demonstrations
into clusters using an adapted version of Gaussian Mixture Models
(GMM). They then perform regression using the Gaussian components
from the cluster of successful demonstrations to generate improved
trajectories for the learning agent.

Other solutions address inadequate data by seeking additional
demonstrations from the teacher, as discussed in Section 3.7.1. Another
effective strategy involves using RL to manage poor-quality data by
collecting new interaction data. In this approach, the learner is first
pre-trained on the available demonstration data and then fine-tuned
through exploration-based methods. During this fine-tuning phase, the
learner interacts with the environment and adjusts its policy based
on feedback obtained either through a standard reward function or
direct guidance from the teacher. For example, in [75], the authors
propose a method where sub-optimal demonstrations are employed to
constrain an RL algorithm. In contrast, [76] highlights the value of
failed demonstrations, proposing a method that leverages these failures
to train a policy. Their approach focuses on teaching the agent to avoid
repeating unsuccessful behaviors observed in the failed demonstrations.
In [77], an algorithm is proposed for learning policies from partially
observable state environments. Alternatively, [78] choose to estimate
the quality of demonstrations by estimating the competence of the
demonstrator and filtering the transitions based on the competence
level.

4. Learning from demonstrations

In this section, we explain the different methods available in the
literature for using the demonstration data set. In general, the demon-
stration learning methods learn a policy or a world model. However,
the demonstration data sets have also been used to learn other types of
models which we will discuss.

4.1. Learning problems

Demonstration learning relies on the data set to learn the models.
As discussed in Section 3.7, collecting the perfect data set is unfeasible
for most applications, resulting in limitations that affect the learning
method. To counter the limitations of the demonstration data sets, the
methods should aim to generalize to regions outside the demonstrated
regions in the data set. However, if the data set does not contain
transitions that correspond to high-value decisions, such as those with
high associated rewards, discovering these regions may be impossible.
[18] argues that this challenge is insurmountable and that methods
should assume that the data set contains sufficient information for
developing a suitable model. To address imperfect demonstrations,
methods should filter out poor demonstrations. Moreover, the method
should learn to extract the beneficial parts of the demonstration, avoid
the detrimental parts, and potentially combine parts from multiple
demonstrations. Naive imitation in a self-supervised manner through
BC risks copying bad behaviors. Therefore, methods that filter out poor
demonstrations can achieve a better policy than the one represented by
the data set.

Another problem with demonstration learning is its inherent para-
dox. Demonstration learning combines supervised learning with the
transition data of RL. To improve upon the policy of the data set, the

goal is to answer what are the sequences of actions that generate the
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Fig. 4. Differences between on-policy reinforcement learning, off-policy reinforcement learning, and demonstration learning.
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maximum reward. However, supervised learning methods assume that
the data is i.i.d. The model should obtain good performance as long as
the data it encounters comes from the same distribution as the one it
was trained on. However, in demonstration learning, the goal is often
to mimic or improve upon the behavior observed in the data set.

All these problems could be alleviated by interacting with the
environment and testing uncertainties that the method may have. This
is why demonstration learning is often followed by RL to refine the
policy with online interactions. Pure demonstration learning is difficult
because the agent cannot collect additional transitions and explore
new regions. Technically, any off-policy method for online RL could
be used to learn a model from the demonstration data set. However,
these methods were created with the assumption that the agent could
interact with the environment to correct existing errors. Demonstration
learning estimates a model to perform a task defined by the state–action
distribution 𝛥𝑡𝑎𝑠𝑘. Demonstration learning methods estimate the model
using the demonstration data set which contains a set of transitions.
The data set also has an associated distribution 𝛥𝑑𝑒𝑚𝑜 ⊂ 𝛥𝑡𝑎𝑠𝑘, which
is a subset of the task’s distribution. However, during deployment, the
agent will likely encounter regions outside the distribution of the data
set, (𝑠, 𝑎) ∉ 𝛥𝑑𝑒𝑚𝑜. The prediction of the model for such regions will
result in larger mistakes than for in-distribution regions. Furthermore,
these mistakes will accumulate and the agent will continue to diverge
from the learned distribution. This snowball effect is known as the
’distributional shift’. Most policy learning methods in offline RL address
the distributional shift in various ways. Some use BC to restrict the
distribution to that of the dataset, which heavily limits generalization.
Others propose to punish the distributional shift in the training loss
by an estimation of uncertainty. Others constrain the agent to specific
regions by making conservative estimates of future rewards for the
Bellman update, by learning a lower bound estimation of the true value
function. In [51], the authors proved that even with optimal action
labels, the compound errors from distributional shift accumulate to a
quadratic error in the best-case scenario. However, this error would
scale linearly, if the agent was allowed to collect additional transitions.
Demonstration learning methods struggle to balance generalization and
avoiding the distributional shift.

4.2. Policy learning

Policy learning from demonstrations involves learning the correct
mapping from states to actions from the demonstration data set. The
teacher demonstrated a policy 𝜋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 and the demonstrated state–
ction pairs in the data set are examples of the correct mapping. The
loser the estimated mapping function is to the original mapping in
he data set, the better the agent will reproduce the teacher’s behavior.
he agent can collect additional transitions by interacting with the
nvironment with RL, receiving a reward, and adjusting the policy
ccordingly. By maintaining a history of past interactions, the agent can
ontinuously update its policy. This approach is known as off-policy
L because the policy is updated with data collected by a previous
olicy. Conversely, on-policy RL updates the policy using the transitions

ollected by the current policy, and does not maintain a history of
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transitions. In demonstration learning, the agent learns from recorded
data from the start, through the demonstration data set. The differences
between the three settings are summarized in Fig. 4.

4.2.1. Behavior cloning
Behavior cloning (BC) is the simplest method for deriving a policy

from a demonstration data set. In this approach, the policy is trained to
directly imitate the teacher’s actions for all states in the data set. The
problem corresponds to either a classification or regression problem, for
discrete or continuous action spaces, respectively. Formally, the policy
is trained to minimize the error between its predicted action and the
ground truth action for all state–action pairs in the data set:

𝜋∗𝜃 = argmin𝜃(𝜋𝜃(𝑠) − 𝑎),∀(𝑠, 𝑎) ∈ 𝐷𝑑𝑒𝑚𝑜.
Another approach is to maximize the likelihood of actions in the

demonstration:
maxE(𝑠,𝑎)∼D𝑙𝑜𝑔𝜋(𝑎|𝑠).
However, because BC naively copies the data set, it is more reliant

n the quality and size of the demonstration data set than other alter-
atives. The data set corresponds to a sub-set distribution 𝛥𝑑𝑒𝑚𝑜(𝑠|𝑎) of
he real distribution of states over actions for a given task, 𝛥(𝑠|𝑎). BC
uarantees the agent’s performance, as long as it only encounters states
resent in the demonstration data set. However, no such guarantees ex-
st if the agent encounters an unseen state. In [78], the authors address
he susceptibility of BC to the quality of demonstrations by estimating
he competence of the demonstrator and filtering the transitions based
n the competence level.

.2.2. Offline reinforcement learning
Sometimes, direct imitation through BC is not adequate to repro-

uce the desired behavior and solve the task due to errors in the
emonstration or poor generalization. The term offline RL is often
sed interchangeably with demonstration learning to describe various
ethods. In this context, we use offline RL to refer specifically to
ethods that apply RL techniques to a data set of demonstrations.

In offline RL, the agent has access to the rewards attributed by the
nvironment to each transition. The policy is trained to maximize the
xpected accumulated reward 𝐽 (𝜋) = E[

∑∞
𝑡=0 𝛾𝑅(𝑠𝑡, 𝑎𝑡)], where 𝛾 is the

iscount factor.
In general, all RL algorithms follow the same basic train loop. The

gent observes the current environment state 𝑠 ∈ 𝑆, then interacts
ith the environment by selecting an action from its policy 𝑎𝑡 ∼ 𝜋(𝑠𝑡).
his interaction changes the state of the environment to 𝑠𝑡+1, and
he agent receives a reward 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡). This process repeats for
ultiple interactions. The agent stores the transitions (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑟𝑡) in

ts memory and uses them to update the policy. In offline RL, the
emory is provided by the demonstration data set 𝐷𝑑𝑒𝑚𝑜.

Due to the limitations of BC, some approaches pre-train the agent on
emonstration data and then optimize it to learn the remaining state–
ction space using online RL [3]. However, online RL is dangerous as
ome actions can lead the agent to catastrophic states which are un-
ecoverable in real-world scenarios. Because of this, some approaches
hoose to employ pure offline RL and apply regulators to reduce the
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impacts of distributional shift [79] or prevent the agent from going out
of distribution [80].

One way to optimize the policy, parameterized by weights 𝜃,
for the Bellman objective is to estimate the gradient: ∇𝜃𝐽 (𝜋𝜃) =
E(𝑠𝑡 ,𝑎𝑡 ,𝑠𝑡+1 ,𝑟𝑡)∈𝐷𝑑𝑒𝑚𝑜 [

∑𝐻
𝑡=0 𝛾

𝑡∇𝜃 log𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡)𝑄𝜋 (𝑠𝑡, 𝑎𝑡)], where 𝑄𝜋 (𝑠𝑡, 𝑎𝑡) is
he state–action value function.

Alternatively, we can use dynamic programming methods by first
stimating the state or state–action value functions, and then using
hem to optimize the policy. The state value function 𝑉 𝜋 (𝑠𝑡) returns
he estimated expected accumulated reward that can be obtained by
tarting at state 𝑠𝑡:
𝑉 𝜋 (𝑠𝑡) = E(𝑠𝑡 ,𝑎𝑡 ,𝑠𝑡+1 ,𝑟𝑡)∈𝐷𝑑𝑒𝑚𝑜 [

∑𝐻
𝑡′=𝑡 𝛾

𝑡′−𝑡𝑅(𝑠𝑡, 𝑎𝑡)].
The state–action value function 𝑄𝑝𝑖(𝑠𝑡, 𝑎𝑡) is similar and returns an

estimation of the expected accumulated reward that can be obtained
by starting at state 𝑠𝑡 and performing action 𝑎𝑡:

𝑄𝜋 (𝑠𝑡, 𝑎𝑡) = E(𝑠𝑡 ,𝑎𝑡 ,𝑠𝑡+1 ,𝑟𝑡)∈𝐷𝑑𝑒𝑚𝑜 [
∑𝐻
𝑡′=𝑡 𝛾

𝑡′−𝑡𝑅(𝑠𝑡, 𝑎𝑡)].
From these definitions, we can reformulate them into a recursive

form:
𝑄𝜋 (𝑠𝑡, 𝑎𝑡) = 𝑅(𝑠𝑡, 𝑎𝑡) + 𝛾E𝑠𝑡+1∼𝑃 (𝑠𝑡+1 ∣𝑠𝑡 ,𝑎𝑡),𝑎𝑡+1∼𝜋(𝑎𝑡+1 ∣𝑠𝑡+1)[𝑄

𝜋 (𝑠𝑡+1, 𝑎𝑡+1)].
The algorithms that estimate the policy based on dynamic program-

ming are mainly split into two families: Q-learning and Actor–Critic
methods.

In Q-learning, the policy is obtained directly by estimating the state–
action value function, and selecting the action that maximizes the
expected accumulated reward: 𝜋(𝑎𝑡 ∣ 𝑠𝑡) = argmax𝑎𝑡 𝑄(𝑠𝑡, 𝑎𝑡). The Q-
learning objective is defined by 𝑄𝜃(𝑎𝑡, 𝑠𝑡) = 𝑅(𝑠𝑡, 𝑎𝑡)+𝛾E(𝑠𝑡+1 ∣𝑠𝑡 ,𝑎𝑡)[max𝑎𝑡+1
𝑄𝜃(𝑠𝑡+1, 𝑎𝑡 + 1)].

Actor–Critic algorithms are a mixture of policy gradients and dy-
namic programming because they use a policy, the actor, like policy
gradients, but also use a value function, the critic, like dynamic pro-
gramming. Actor–Critic algorithms learn the state–action value for the
current policy 𝜋𝜃(𝑠𝑡): 𝑄𝜋 (𝑠𝑡, 𝑎𝑡) = 𝑅(𝑠𝑡, 𝑎𝑡) + 𝛾E𝑠𝑡+1∼𝑃 (𝑠𝑡+1 ∣𝑠𝑡 ,𝑎𝑡),𝑎𝑡+1 ∣𝜋(𝑠𝑡+1)
[𝑄𝜋 (𝑠𝑡+1, 𝑎𝑡+1)].

In early research, a set of algorithms were explored to fasten and
improve RL. The authors in [81], compared eight RL frameworks,
including pre-training with demonstration data, for performing a task
of playing a 2D game. The authors concluded that pre-training the
policy on demonstration data prevents the learner from falling in a
local minimum and increases its scores. Furthermore, the improvements
are more noticeable with the increase in the difficulty of the task. One
notable example of the success of pre-training is the development of a
RL agent capable of playing the game ‘‘Go’’ at a level that rivals the best
human players [5]. In this application, the initial policy’s weights are
obtained from training on demonstration data, which are then refined
through exploration using RL. In [3], the authors tackled the issue of
RL being impractical to real-world issues, due to the risks associated
with trial-and-error learning and the potential for severe consequences.
Their approach involved pre-training the policy on demonstration data,
which resulted in higher rewards during the initial learning iterations
compared to standard RL methods. This demonstrates that pre-training
on demonstration data leads to safer and more effective exploration
strategies.

Additionally, a policy trained from online interactions can then
demonstrate correct interactions. These demonstrations can then be
used to transfer the knowledge to another agent. This approach by-
passes the need for a human teacher by learning the policy entirely
through trial and error, and then recording the successful interactions
as demonstrations. It is especially valuable in situations where real-time
policy updates are not possible [52].

4.2.3. Classification
In this context, classification refers to the process of assigning a

specific action class to a given input state. This approach is used when
the action domain is discrete, consisting of a finite set of predefined
individual actions. For example, in a 2D platformer game where the

agent can only walk left or right or jump, the inputs are categorized
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into these three actions. The policy’s performance is evaluated by how
often it attributes the correct action for any given input state.

Formally, the policy is a classifier 𝜋(𝑠), used to predict the action
class 𝑎 of an observation 𝑠. Where 𝑎 ∈ 𝐴,𝐴 = {𝑎1,… , 𝑎𝑛} is a finite set
of actions.

Classification methods can be applied to different levels of complex-
ity ranging from low-level actions to complex behaviors. For instance,
Bayesian networks were used in [82] for navigating an environment
and avoiding obstacles. In [83], the authors created mapped represen-
tations of the environment and used a k-nearest neighbors algorithm
to select the robot’s actions. In [57], a GMM was used for classifying
actions in navigational problems. Additionally, [84] evaluated four
different classifiers for cooperative tasks in robot soccer.

More recently, neural networks have become the preferred classi-
fiers due to their role as universal approximators, capable of modeling
complex functions. For example, [85] employs Recurrent Neural Net-
works (RNNs) to train a robotic arm on manipulation tasks using
demonstration data collected in a simulation environment. The RNN
learns to predict trajectories in real-time, considering both the current
position of the end-effector and the objects in the environment. Neural
network classifiers are particularly effective for video games, where the
number of possible actions is finite. In [3], the policy is represented
by a neural network classifier with 18 neurons in the final layer, each
corresponding to one of the 18 possible actions.

Some works have proposed ways of discretizing continuous action
space [86]. This allows any discrete RL algorithm to be applied to the
continuous state problem.

4.2.4. Regression
In this context, regression involves selecting a set of scalar values

that define an action based on a given input state. These techniques
are used when the action domain is continuous. For example, in the
control of a robotic arm, each action can be defined by the robot’s
joint angles. The policy’s performance is evaluated by comparing the
estimated action values with the ground-truth action values in the data
set for the given state.

Formally, the policy is a regressor 𝜋(𝑠) which maps a state 𝑠 ∈ 𝑆 to
actions 𝑎 ∈ 𝐴, where each action is defined by a finite set of continuous
values 𝑎 = {𝑎1,… , 𝑎𝑛|𝑎𝑘 ∈ R}. Typically, regression approaches are
applied to low-level motions and not high-level behaviors because high-
level behaviors are a combination of low-level motions and are more
likely to be discretized.

A traditional regression technique is Locally Weighted Regression
(LWR), which is well-suited for learning trajectories composed of se-
quences of continuous values. In [87], a robotic arm is trained to
execute a trajectory enabling it to perform manipulation tasks. Lo-
cally Weighted Projection Regression (LWPR) extends the previous
approach to cope and scale with the input data’s dimensionality and
redundancy. [24] uses LWPR to teach a robot to perform basic soccer
actions.

Similar to classification tasks, recent works commonly use neural
networks for regression due to their ability to represent any function.
In [55,56], a robotic arm is trained from demonstrations to perform
manipulation tasks. The action is determined by a neural network,
where the number and values of the last layer’s neurons correspond
to the number of joints of the robot.

Other approaches specify the type of task the agent can perform
within the network. In [88], a robotic arm is trained to pick and place
blocks. The network that outputs the actions has four neurons: the first
two specify the position and rotation of the end-effector for picking up
a block, while the other two are for placing the block. Therefore, the
two groups of neurons are used separately.

In [89], an algorithm is proposed to convert discrete actions in the
demonstration data set into continuous ones. An encoder is trained for
this purpose to promote behavioral and data-distributional relations in

the features. Then, an off-the-shelf algorithm can be used to train a
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Fig. 5. Differences between policy learning and model learning from demonstrations.
policy using the new data set. However, because the policy outputs
feature embeddings, the actions cannot be directly applied to the task
environment. Therefore, the output of the policy is discretized by
finding the action whose embedding is closer to the output of the
policy.

4.3. Model learning

Model-based methods learn the dynamics of the environment by
estimating the transition function 𝜓(𝑠𝑡, 𝑎𝑡) ∼ 𝑃 (𝑠𝑡+1 ∣ 𝑠𝑡, 𝑎𝑡). This
stimated transition function serves as a proxy for the real environ-
ent, allowing the agent to collect new transitions without directly

nteracting with the environment, remaining safe during the learning
rocess. In standard RL, the agent must interact with the environment
o collect transition data that represent the dynamics. In demonstration
earning, the transition function can be estimated from the demonstra-
ion data set. These differences are represented in Fig. 5. The functions
re typically estimated through standard supervised regression, using
he states and actions as inputs and the next states as the desired
utput: L𝜓 (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) = ‖𝑠𝑡+1−𝜓(𝑠𝑡, 𝑎𝑡)‖. Model-based learning methods

from standard RL can be used to learn from demonstrations [67,
90]. Standard online learning algorithms can be applied with minimal
modification to train a model from demonstrated data.

However, because the policy learns from transitions simulated by
the model, its performance is dependent on the quality of the estimated
model, which in turn relies on the quality and coverage of the data
distribution in the data set. In standard RL, the models can correct
mistakes in the estimations by collecting new transitions. Similarly to
policy learning, if the model is estimated solely from demonstrations,
it can suffer from the distributional shift problem. In fact, the model
can suffer from distribution shift regarding the true state distribution,
and the true action distribution.

The distributional shift can cause the model to be exploited by the
policy. The policy is optimized to maximize the expected accumulated
rewards and may use the model to produce out-of-distribution states.
Because these states are out-of-distribution, the model’s predicted val-
ues are likely incorrect and may have an associated higher reward
than the true state in the real MDP. Consequently, the policy learns to
maximize erroneous transitions, leading to a worse performance once
deployed to the real MDP.

A theoretical analysis presented in [90] formulates the bounds on
the error between the learned policy and the policy in the data set,
attributing these errors to distributional shifts in both the policy and
the model. The methods for reducing the distributional shift in policy
learning can also be applied to model learning. The main way to
reduce the distributional shift problem in model learning is by learning
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an auxiliary model U(𝑠, 𝑎) ∶ S × A → R, that punishes the reward
function such that the agent avoids states outside the distribution:
𝑅′(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) +U(𝑠, 𝑎). Model-learning methods usually measure the
uncertainty using an ensemble of models. In [91], the method only
punishes the reward function if the disagreement of the ensemble is
above a threshold. Alternatively, [92] adopts a pessimistic approach by
selecting the maximum prediction uncertainty of the ensemble. In both
approaches, the policy is penalized for visiting states where the model
is likely to be incorrect. However, measuring uncertainty is challenging
and often unreliable. To address this, [93] proposes learning the policy
by generating a new data set from transitions produced by each of the
models of an ensemble to counter uncertainty. Another approach to
reduce the distributional shift without quantifying uncertainty is to use
a regularizing term. For example, in [94] a model-based version of the
Conservative Q-Learning (CQL) [79] algorithm is proposed.

Instead of learning the policy within the model, the learned model
can be used to evaluate the policy without interacting with the environ-
ment. For instance, [95–97] utilize the model to estimate the expected
return of the trajectories generated by the policy. In [98], a model is
trained from demonstrations to estimate a task from images, which is
particularly challenging due to their high dimensionality.

4.4. Inverse reinforcement learning

Reward functions map a state transition to a reward value based
on the quality of the interaction: 𝑅(𝑠, 𝑎) ∶ 𝑆 × 𝐴 → R. They define the
objectives for the agent by guiding the learning process to maximize the
expected accumulated reward. Traditionally, the reward functions are
handcrafted by the programmer, which involves designing a function
that assigns a reward value to each state–action pair. However, this
task becomes increasingly challenging in high-dimensional domains,
where covering the entire state space can be difficult and often results
in sparse rewards. Transitions where the agent receives no feedback,
through a reward of zero, hinder the convergence of the policy to an
optimal one and sometimes may prevent convergence altogether. The
requirement to create a reward function that covers the entire task,
limits the applicability of learning algorithms to problems where a
reward function can be easily specified.

An alternative is Inverse Reinforcement Learning (IRL) [99], also
known as reward shaping. In IRL, the demonstration data set is used to
infer a reward function, which is then employed to train a policy using
standard online RL methods to maximize the expected accumulated
reward defined by this function. IRL thus broadens the applicabil-
ity of task learning models and reduces the manual effort required
by programmers when demonstrations of the task are available. The
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Fig. 6. Differences between policy learning and reward learning from demonstrations.
differences between policy learning and reward learning from demon-
strations are illustrated in Fig. 6. [20] points out that the reward
function is more transferable than a policy. While minor changes
to the task can make a policy ineffective, such changes have a far
less significant impact on the reward function. Typically, the learned
reward function only needs to be extended to accommodate new states,
rather than completely redesigned.

Demonstration learning assumes that the teacher follows a pol-
icy 𝜋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 which is maximizing a reward function 𝑅𝑡𝑒𝑎𝑐ℎ𝑒𝑟(𝑠, 𝑎) when
demonstrating a skill. The idea of IRL is to estimate the underlying
reward function from the demonstrations. Formally, we have an MDP
without the reward function, 𝑀𝐷𝑃⧵𝑅, and a demonstration data set
with 𝑁 demonstrated trajectories 𝐷𝑑𝑒𝑚𝑜 = {𝜏𝑖}𝑁 , where each trajectory
is a sequence of 𝐿 state–action pairs 𝜏𝑖 = {(𝑠𝑗 , 𝑎𝑗 )}𝐿. The goal is
to create an estimate �̂� of the reward function that best describes
the demonstrated behavior. In essence, IRL inverts the RL problem:
rather than learning an optimal policy from demonstrations, potentially
using the logged reward (𝑠, 𝑎, 𝑟), IRL seeks to explain the demonstrated
behavior by estimating the corresponding reward function.

IRL should estimate a reward function that generalizes from the
demonstrated behavior. Hence, like other demonstration learning meth-
ods, IRL seeks to address the question: What happens if the agent were
to perform a trajectory different from those in the data set? This is
important because if we want the learning agent to improve upon the
behavior seen in the data set, the agent must execute a trajectory that
is different than the ones in the data set. However, most ML algo-
rithms assume that the data is independent and identically distributed
(i.i.d.). Consequently, addressing this question is challenging due to the
problem of distributional shift.

Additionally, there can be many solutions to the reward function
that describe the same behavior resulting in ambiguity. Some of these
solutions, such as one that always returns the same reward, might
accurately describe the observed behavior but be practically unusable.
Due to this ambiguity, it is important to determine how to measure
the performance of the estimated reward function. If the true reward
function is available, we can directly measure the error between the
predicted rewards for each state–action pair and the ground truth
rewards. Alternatively, we can estimate a value function from the
learned reward function and compare it to the real value function.
However, the true reward function is often not accessible, which is
precisely why IRL is employed in the first place. A more general way of
measuring performance is to estimate a policy from the learned reward
function, and assess its performance using the demonstration data set.
The limitation of this method is the problem of how to evaluate the
policy. Interacting with the environment is not possible because the
true reward function is not available. Hence the only policy evaluation
metric is to compare the policy predictions with the actions of the
demonstrator for every state in the data set. However, this comparison
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is limited because even if the policy is only wrong in a single state, it
can still result in compound errors at deployment. As a result, no single
metric in IRL fully captures the performance of the learned reward
function without access to the ground-truth. Furthermore, the design of
the reward function’s structure and the choice of its parameters are non-
trivial. Using too many parameters can lead to overfitting and hinder
generalization, while too few parameters may prevent the policy from
effectively converging.

To obtain a unique reward function, IRL methods define additional
optimization goals, the most common of which are maximum margin
and maximum entropy. In the maximum margin setting, the reward
function is the one that maximizes the difference between the best
policy and all other policies. For example, [100] employs a maximum-
margin-based IRL method to develop a policy for navigating rough
terrain. In contrast, the maximum-entropy approach aims to find a
distribution of policies that maximizes the entropy subject to certain
constraints, such as feature matching, to ensure that the task’s goals
are reached. For instance, [101] uses the maximum entropy framework
to learn a reward function for a driving task where there are multiple
routes for the same destination in the demonstrations. The approach is
later expanded to use deep learning in [102] for a table tennis task.

For discrete action spaces, IRL can be formulated as a classification
problem, where for each state–action pair, the action is seen as the
label for the state. The direct way to obtain a reward function is by
estimating the action-value function which we explain in Section 2.
This approach was used by [103] and later by [104]. However, this
method assumes that the demonstrated state–action pairs are optimal.

Another approach to estimate the reward function involves assign-
ing higher rewards to states encountered in the demonstrations, or
similar states, than to states not found in the data set. For instance,
in [35], the authors use demonstrations to estimate a Hidden Markov
Model (HMM) which determines the associated reward for each state.
Similarly, [40] applies this approach to the task of balancing a pole us-
ing a robotic arm. In [105], the authors explore three different methods
for parameterizing reward functions from demonstrations and applied
them to reaching, picking, and placing tasks. In [55,56], the reward is
proportional to how close the images captured by the learning agent at
a certain timestamp are to the respective frame of the demonstration
video.

Some approaches employ an actor–critic algorithm, where a third-
party critic defines the reward function and provides feedback on the
actor’s actions. For example, [64] describes a method where the critic’s
policy is trained simultaneously with the actor’s policy. Initially, the
critic imposes constraints to guide the actor’s behavior, but as the
learning process progresses and the actor’s competency improves, the
decision-making authority gradually shifts from the critic to the actor.

Reward functions obtained with IRL, can encourage the achieve-
ment of sub-goals or milestones during the task execution, that are



A. Correia and L.A. Alexandre Robotics and Autonomous Systems 182 (2024) 104812 
represented in the demonstrations. In [106,107], the authors explore
the intersection between RL and demonstration learning. Their results
in two simulated domains show that reward-shaping methods can be
more sample-efficient and robust against sub-optimal and inconsistent
demonstrations than transfer learning algorithms.

4.5. Other learning methods

In this section, we discuss methods that complement or refine the
previous learning methods to achieve greater accuracy, generalization,
or robustness. Learning from demonstrations alone may not be suffi-
cient to learn the task for all scenarios due to the limitations of the data
set discussed in Section 3.7. Interacting with the environment allows
the agent to collect extra data that it may use to refine the model.

The data set is unlikely to have a demonstration for all the pos-
sible environment states, particularly in high-dimensional spaces such
as those encountered in real-world tasks. Hence, during the learning
process, the agent must aim to generalize beyond the provided demon-
strations. However, the agent may still not be able to generalize due to
either limitation of the data set or the learning method. Generalizing
in demonstration learning is especially difficult because the demon-
strations are sequences of interactions where each action depends on
the history of previous interactions, violating the i.i.d. assumption of
supervised learning [58]. During training, the agent learns a sub-set
distribution of the real task distribution. As a result, the agent learns
from a subset of the real task’s distribution, and during inference, it may
encounter out-of-distribution states where it has no prior knowledge,
potentially leading to unsafe actions. As discussed previously, some
methods try to reduce this issue by explicitly reducing the distribu-
tional shift. However, constraining the agent to only operate within
the demonstrated state distribution can limit the agent’s performance.
Consequently, methods that refine the agent’s model through additional
interactions with the environment, allow the agent to learn missing
information. Such an agent is safer than a random agent with no task
knowledge performing random interactions.

4.5.1. Reinforcement learning
RL models the problem as an MDP, as does demonstration learning.

Instead of learning from a pre-existing data set of environment inter-
actions, the RL agent interacts with the environment using its current
policy and receives rewards based on these interactions. RL starts with
a random policy and tunes its parameters towards maximizing the ex-
pected accumulated rewards. This approach can also refine parameters
of a policy learned from demonstrations. An agent initialized with a
demonstration-based policy is safer and converges faster, avoiding the
risk of local minimum. This advantage was shown in [3] to learn Atari
games. By exploring and learning from new state space regions, the
agent enhances its generalization capabilities and robustness. However,
when encountering unknown states, the agent may make mistakes,
which can have catastrophic real-world consequences. Hence, such
algorithms should be equipped with safety mechanisms. RL can also
be used to train a policy from scratch in an online manner, which
can then be used to generate the demonstration data set to train and
evaluate the demonstration learning methods. This approach is limited
to environments where online RL is possible and primarily serves to
automatically generate demonstrations to evaluate the performance of
demonstration learning methods. If online RL is viable, there is no
need to train a secondary policy with demonstration learning. However,
training a second policy can be beneficial if the RL agent does not act
in real-time [52].

One of the most well-known application occurred when [5] trained
an agent to play ‘Go’ to the extent of beating human experts. In this
case, the agent is initially trained using demonstrations and then further
refined through RL. In [108], RNNs are used to deal with POMDPs
by incorporating past information to guide decision-making. Here, the
agent is trained with RL, and demonstrations are used to determine

which memories to retain.
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4.5.2. Evolutionary algorithms
Like RL, optimization algorithms can be employed to learn or refine

a policy to replicate a behavior. Evolutionary Algorithms (EA), inspired
by natural animal behaviors, are popular optimization methods used to
find solutions to various problems.

EAs can be used to generate trajectories, with the most common
being Particle Swarm Optimization [109] and Ant Colony Optimiza-
tion [110]. These algorithms, inspired by the behaviors of birds and
ants respectively, aim to find optimal solutions within a search space.
They have been extended with demonstrations to improve the learning
process. In [31], EAs are used to optimize agents in a soccer simulation.
The possible solutions, represented as chromosomes consisting of if-
then rules, were derived from demonstration data. These solutions were
then evaluated using a performance-measuring function, with the best-
performing ones progressing to the next generation. In [111], PSO
was utilized to find optimal behaviors, where demonstrations defined
the initial behavior. Each particle modified its behavior by observing
better-performing particles, with performance assessed by a fitness
function. Additionally, in [112], Preference based Policy Learning was
employed to teach a robot to navigate.

4.5.3. Transfer learning
Transfer Learning (TL) is a paradigm that leverages knowledge

acquired from training on one task to facilitate learning a second task.
Instead of training the second task from scratch, the knowledge from
the first task can serve as a starting point, an optimization step, or, in
rare cases, to perform the task completely. Formally, given a task 𝑇𝑠
learned in the MDP domain 𝐷𝑠, the idea is to improve the learning of
the goal task 𝑇𝑔 in the MDP domain 𝐷𝑔 using the knowledge of the
previous task. TL is beneficial because it reduces the need to gather
new samples; they can either be directly used by the new task, or the
knowledge gained from training a policy on the original data can then
be used to train the new task.

In demonstration learning, the demonstrations recorded for one task
can be used to learn a second task. For instance, [113] employ transfer
learning to enhance reward shaping (IRL). Reward shaping depends
on prior knowledge, and transfer learning can leverage the knowledge
of a policy learned for one task to shape rewards for a similar task.
Additionally, [114] discovered that even if the agent overfits on the
previous task, it can still adjust its weights sufficiently to recover and
converge to the optimal weights of the second task. Their approach
involves using graphs to identify previously encountered games and
applying the relevant knowledge to the current game.

Alternatively, policies learned for a task can advise a learner on
another similarity task. This knowledge can be transferred in the form
of useful feature representations and specific parameter values. More-
over, an existing policy can serve as a foundation for developing a new
policy for a different task. In [115], TL was used to learn a new soccer
skill after learning a different one in a simulation. The experiments
demonstrated that TL reduces the convergence time and achieves better
performance.

4.5.4. Adaptive learning
Demonstration learning algorithms must consider that demonstra-

tion data sets are often incomplete, missing regions of the state space.
A common approach to address this issue is to use pessimistic or
conservative methods, which keep the policy close to the regions
covered by the data set and avoid significantly different behaviors.
However, these approaches can lead to sub-optimal estimations due
to their strong restrictions. Additionally, agents can become stuck in
certain states and repeat the same action over and over. To address
this, policies should be adaptable, correcting poor choices. In [116],
the authors train uncertainty-adaptive policies that incorporate a belief
parameter, estimated from the interaction history using an ensemble of
networks. After a failed interaction, the history changes, altering the
belief value. Consequently, this new belief value prompts the agent to

select a different action, preventing it from getting stuck in states.
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4.5.5. Active learning
Active learning is a paradigm where the learning agent can query

an expert for guidance, which is particularly useful in demonstration
learning when the demonstration dataset is limited. When the agent
encounters a state not represented in the demonstration data set, it
might fail to choose the correct action, potentially leading to unsafe
outcomes. Active learning addresses this issue by enabling the agent to
request additional demonstrations from the teacher.

The approach to update the policy using both demonstration data
and the teacher responses requires selecting which option to choose
from at any given state. This can be achieved through a confidence
score, as demonstrated in [24]. If the confidence for a given state–
action pair is low, the learning agent queries the teacher for guidance.
The learning agent progressively increases its confidence scores while
obtaining a generalized policy, reducing the need for teacher queries
over time. However, the main drawback of this approach is the addi-
tional investment required from the teacher, which may be unfeasible
in some cases. In [117], the authors use active learning in human–robot
cooperative tasks. For successful cooperation, the robot must be able
to adapt its behavior to complement the human counterpart. Active
learning is used after each round of interactions, with expert feedback
provided via a graphical interface. The expert’s feedback is provided by
a graphical interface, recorded, and added to a database. This feedback
is recorded, added to a database, and subsequently used to update the
robot’s policy. Results indicate that the robot’s policy converged more
smoothly using this method, particularly in tasks such as standing-up
and assisted walking.

4.5.6. Generative adversarial imitation learning (GAIL)
The authors of [46] introduced a model-free demonstration learning

method called GAIL, which adapts the Generative Adversarial Network
(GAN) [118] framework to the demonstration learning paradigm. In
GAILs, the reward function is learned from the demonstration data and
then used in RL for learning the policy. GANs consist of two neural
networks: a generator and a discriminator. The generator creates syn-
thetic data points, while the discriminator has to distinguish between
the synthetic data and real data from the data set. The discriminator
is trained to correctly identify whether each data point is real or
generated, and the accuracy of these classifications adjusts the weights
of both networks. The generator seeks to deceive the discriminator
into misclassifying generated data as real, and it is rewarded when it
succeeds. Conversely, the discriminator aims to avoid being fooled and
is rewarded for accurately classifying data.

In GAILs, the learned policy 𝜋 serves as the generator in the adver-
arial setup, while the discriminator 𝐷𝜙 is responsible for determining
hether a given state–action pair originates from the demonstration
ata set or is produced by 𝜋. The goal of 𝜋 is to improve its behavior
o more closely replicate the demonstration data, thereby generating
rajectories that deceive 𝐷𝜙. To achieve this, 𝐷𝜙 is trained as a bi-
ary classifier to differentiate between real state–action pairs from the
emonstration data and fake pairs generated by 𝜋. The generator 𝜋 is

rewarded for successfully confusing 𝐷𝜙, and treating this reward as if
it were an external analytically-unknown reward from the environment
through RL.

In [119], the authors present two algorithms: one designed for of-
fline GAIL and another for online GAIL. These algorithms improve upon
existing state-of-the-art methods by enhancing the efficiency and effec-
tiveness of the GAIL framework. In [120], a discriminator is trained
to distinguish between two data sets with significant differences in
quality. The discriminator is then used as a filter for the policy to avoid
learning from sub-optimal data. In [121], a policy is trained to perform
multiple small skills, where each skill is represented by a discriminator,
a replay buffer, and a demonstration buffer. Each discriminator learns
to differentiate between descriptors built from a pair of consecutive
states sampled from either the replay or demonstration buffer. The
 i
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reward is higher when the policy fools the discriminator into thinking
the consecutive states were demonstrated.

Similar to GANs, GAILs suffer from severe sample inefficiency,
which hinders the agent’s ability to learn effectively from a limited
number of interactions with the environment. This challenge has been
addressed in subsequent research, such as in [122]. In [123,124], a
discriminator is used to distinguish between generated and demon-
stration state–action pairs to learn multiple similar tasks at once. This
method facilitates the generalization of the learned policy to additional,
contextually similar tasks.

Similar to GAILs, [125] introduces a zero-sum game framework
where a second player acts as an antagonist to perturb the transition
probabilities of the protagonist. In this setup, the antagonist operates
with a perturbation budget designed to optimize the protagonist’s pol-
icy against the worst-case alpha percentile of transitions, thus providing
safety guarantees. More recently, [126] proposes to use adversaries
in place of the critic in actor–critic algorithms to improve sample
efficiency.

4.5.7. Embedding space
Learning from visual states requires applying a function 𝑓 (𝑠) that

xtracts a set of 𝑁 values, known as features, from the observations:
(𝑠) ∶ 𝑆 → R𝑁 , where 𝑁 is the dimension of the embedding space.
ith deep learning, these features, and the corresponding embedding

pace, are typically estimated by applying a set of convolutions and sub-
ampling operations to the input images. In demonstration learning, the
tates from the demonstration data can be used to explicitly learn an
mbedding space to extract features with specific characteristics.

Contrastive learning is a self-supervised learning paradigm that
ompares different images sharing a common signal to learn robust
epresentations. It has been applied to multiple ML fields, with a
otable example being image classification [127]. In such applications,
ontrastive learning creates an embedding space where images from
he same class are pulled closer together, while images from different
lasses are pushed apart. A linear classifier [128] is then trained
n top of the embedding space for a few epochs to classify images
ased on these learned features. In [129], this approach is adapted to
emonstration learning, where demonstrations captured from multiple
amera view points are used to learn a viewpoint-invariant embedding
pace. This learned embedding space facilitates the development of a
iewpoint-invariant policy, thereby enhancing the policy’s robustness
o changes in camera position and different perspectives.

In [130], the representation learning part is decoupled from policy
stimation, where the embedding space is estimated by contrasting im-
ges that appear close to each other in a sequence of frames. In [131],
he different views are obtained through transformations applied to
he original image. Alternatively, in [132] the representations are
btained by contrasting the similarity between the sequence of actions
equired to reach each contrasting state. In [55,56], an embedding
pace for view-invariant features is estimated from a multi-view data
et through triplet learning. Similarly, in [133] the authors train an
ncoder to estimate similar features for concurrent frames of multi-view
ynchronized videos. However, the criterion here is cycle consistency,
here for two views, a data point is cycle-consistent if the nearest
eighbor of its nearest neighbor is the point itself.

Siamese networks [128,134] have been paired with contrastive
earning, where each network is responsible for extracting features from
ifferent views of the same data. In [134], the different views are
btained through data augmentation and applied to motion simulation
asks. Other forms of obtaining different views from a single image are
y using different image channels. For example, [135] converts images
o the Lab color space, where the L and ab components are treated as
wo views of the image. Then contrastive loss is applied to learn an
mbedding space. Their findings indicate that increasing the number
f views, such as by using additional channels or data augmentations,
mproves the quality of the learned features.
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In [66,136], exploration is performed to estimate an embedding
space without task-specific returns. In this approach, the embedding
space is initially learned through exploration, and later refined for
specific tasks using the reward functions of those tasks. The core
idea is to encourage the embeddings to capture meaningful skills by
maximizing the mutual information between state transitions and the
associated embedding. This is achieved through a contrastive loss that
approximates the lower bound of the mutual information, ensuring
that the learned embeddings are informative about state transitions.
For exploration, the agent is trained to maximize rewards that are
proportional to the entropy of state transitions, which fosters explo-
ration of diverse state regions. This two-phase process allows the agent
to develop a robust embedding space through exploration and then
fine-tune it for particular tasks to optimize performance.

In [137], the authors use bisimulation to generate an embed-
ding space where functionally identical states from different tasks are
mapped to the same embedding. Using this embedding space, the
learning agent is trained to adapt to different tasks that are functionally
identical to previously learned tasks.

4.5.8. Sequence models
Sequence models learn from a series of transitions instead of a single

transition, leveraging the history of past interactions to make more
informed decisions By considering the sequential nature of data, these
models utilize past experiences to improve their predictions and reduce
the likelihood of deviating from the intended distribution of actions. In
sequence models, the objective is to optimize the model over entire
trajectories 𝜋(𝜏), by finding the best distribution of actions over these
trajectories.

Sequence modeling with deep networks has evolved from Long-
Short Term Memory (LSTM) architectures to Transformer architectures
with self-attention [138]. The latter have revolutionized many Natural
Language Processing (NLP) tasks. Recently, they have been applied to
RL by re-formulating it as a sequence modeling problem [139,140].
These treat RL as a supervised learning paradigm that predicts action
sequences from trajectories and task specification (e.g., target goal or
returns), instead of traditionally learning Q-functions or policy gradi-
ents. In the Decision Transformer (DT) [139], the agent is conditioned
on past trajectories and the accumulated reward to be collected in the
future, the returns-to-go (RTG). While the DT has demonstrated success
across various tasks, its reliance on a fixed RTG sequence can limit
its effectiveness in stochastic environments where the reward structure
is not predetermined and must be specified by the user [141]. This
requirement for manual reward specification can be challenging and
may impact performance. In contrast, the Trajectory Transformer [140]
employs the Transformer model both as a policy and as a model of the
environment.

Subsequent research has proposed several methods to address issues
with the DT. In [142], online learning is used to train the Transformer.
Alternatively, [143] pre-trains the Transformer on large corpus of text
which in turn increases performance on seemingly unrelated tasks. To
address the DT’s dependency on the RTG, several alternative methods
have been proposed. One notable approach is presented in [144], where
a value function is trained using the demonstration data set to replace
the RTG sequence with state value predictions. While this method miti-
gates issues related to RTG sequences and environmental stochasticity,
it introduces a dependency on the quality of the value function, which
is constrained by the available demonstration data. Other works target
the stochasticity problem of the DT. The method in [145], aims to
estimate environmental stochasticity using a Transformer model to aid
policy learning of the main Transformer.

While Transformers have achieved remarkable success due to their
self-attention mechanism, their scalability is constrained by quadratic
scaling relative to the size of the context window. In contrast, Struc-
tured State Space Models (SSSM) [146] have gained attention for their

linear scalability with respect to the sequence length. Notably, the t
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Mamba architecture [147] merges the context-dependent reasoning of
Transformers with the linear scalability of SSSMs through its selection
mechanism. Mamba has demonstrated superiority over Transformers
in numerous sequence processing tasks [148]. Like the Transform-
ers before it, Mamba has potential to impact demonstration learning
applications.

4.6. Multi agent

Cooperation between agents is useful for robotic tasks and has been
explored in RL. In RL, multi-agent systems often explore how agents can
collaborate to achieve shared goals. Despite its importance, it has not
received the same attention in demonstration learning. The shift from
single-agent to multi-agent settings introduces significant complexity,
as it requires not only learning individual policies but also managing
interactions among multiple agents.

The state space must be expanded to include the status of all agents,
as each agent’s decisions are interdependent on the states of the others.
Consequently, the reward function in these systems must also reflect
the collective or individual goals of the agents. In a cooperative setting,
the reward function is designed to encourage agents to work together
to maximize a shared cumulative reward. Conversely, in a competitive
setting, the reward function is structured so that one agent aims to
maximize its own reward while strategically minimizing the rewards
of other agents.

In [31], the team of robots works together to prevent the opposing
team from scoring in a soccer game. In this approach, all robots share
a common policy, which is updated collectively based on the actions of
any individual agent. This method, while effective, essentially mirrors
single-agent learning techniques. Alternatively, in [84] each of the
agents learns different roles separately that in the end complement each
other. Despite these advances, true multi-agent cooperative learning
remains an open problem.

4.7. Learning modifications

In this section, we will discuss modifications that have been em-
ployed by demonstration learning algorithms to tackle the problems
that plague them.

Constraints serve as loss terms designed to impose specific char-
acteristics on the learned model. These terms are either distribution
constraints or action constraints. Most commonly, these constraints are
employed to ensure that the model remains within the data distribution
of the demonstration data set, thus mitigating distributional shift and
its negative impacts. Constraint methods can be divided into two
categories: direct and indirect.

Direct methods estimate the policy of the data set through BC
𝜋𝑑𝑒𝑚𝑜 and use it to constrain the learned policy 𝜋𝜃 , such that the
divergence between the distributions of the two policies is below a
threshold 𝜖: |𝛥𝜋𝜃 − 𝛥𝜋𝑑𝑒𝑚𝑜 | < 𝜖. However, a major drawback of direct

ethods is their dependence on the quality of the behavior policy.
stimating the behavior policy is difficult due to its reliance on the
uality of the demonstration data set. Then, an incorrect behavior
olicy can cause methods that use it to constrain the learning process
o fail. For example, a behavior policy that was learned from sub-
ptimal or incorrect demonstrations will constrain the policy learning
ethod on such states, causing the policy to be too pessimistic which

s undesirable. Furthermore, if more demonstrations become available,
irect constraints require re-estimating the behavior policy. In [6], the
lgorithm estimates the behavior policy using a parametric generative
odel and constrains the learning policy to make sure it only chooses

ctions that the behavior policy would choose. Later in [149], the
uthors argue that since constraining the distribution does not take
nto account the quality of the actions, action constraining is superior.
n [150], the authors applied a value penalty in the state-value function

o improve performance.
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Table 2
Distinction between evaluation methods.

Quantitative Qualitative

Goal Performance Believability
Judgement Objective Subjective
Metric Distance to goal Subjective Analysis

Contrarily, indirect methods avoid the need to estimate a behavior
olicy and instead modify the learning objective and use samples
rom the data set. The most common approach is to minimize the
ullback–Leibler divergence between the distribution of the learned
odel and the distribution of the demonstration data set. In [151,152],

he algorithms estimate advantage functions to constrain the policy to
educe variance and increase sample efficiency. In [153], the authors
dd a regularizer based on BC by penalizing the difference between
ctions from the learned policy and the data set.

Alternatively, instead of imposing constraints, other methods can
ncentivize the model to have specific behaviors independent of the
emonstrated data set. If the regularization term is T, the learning
bjective is adjusted to incorporate the regularization term: 𝐽 ′(𝜋) =
(𝜋) + T. Examples of regularization terms include penalizing the
eights of the networks [3], and state entropy [66], to avoid over-

itting. In [154], an entropy regularization term is proposed to control
he stochasticity of the policy and promote exploration, preventing
remature convergence, improving robustness and stability. In [79],
he method learns a lower bound of the true Q-function by adding a
egularization term in its estimation.

Next, we can relax the constraints and regularization based on how
uch we trust the model. For instance, if we estimate the uncertainty

f the model, we can reduce safety constraints in low-uncertainty state
egions: 𝐽 ′(𝜋) = 𝐽 (𝜋) + 𝜎T, where 𝜎 is a function which weights how
uch to emphasize the regularizing term. Entropy estimation methods

an be applied as regularization terms such as clustering the state space
n [66] or ensembles of models [155].

We provide a categorization of demonstration learning methods in
he Table 4. The methods are categorized by demonstration technique,
ype of the input data, the learning objective of the method (such
s learning a policy or a world model), the inference type (classifi-
ation, regression or both of them), the evaluation metrics and the
pplications.

. Evaluation

Like other ML paradigms, demonstration learning methods require
valuation using specific metrics. These metrics are categorized into
uantitative and qualitative, as outlined in Table 2. Demonstration
earning inherits metrics from RL and supervised learning, with com-
on performance metrics including success rate, accumulated reward,

nd classification or regression error on a demonstration test set. How-
ver, some applications prioritize human-like behavior. Additionally,
emonstration learning faces challenges in specifying hyper-parameter
alues.

Experiments are typically conducted on specific robots or simulators
ailored to the method being tested. Due to the limited number of
enchmarks, evaluations can be challenging. Demonstration learning
an use RL benchmark simulation environments, some of which in-
lude demonstration data sets. Even if demonstration data sets are
ot provided, a policy can be trained through RL to learn the simu-
ation task and generate the necessary data sets. However, real-world
enchmarking remains complex due to required hardware, varied back-
rounds, and safety concerns. As a result, custom task environments
nd demonstration data sets are often created for each individual
ethod, though some real-world demonstration data sets do exist.
his section elaborates on the evaluation processes in demonstration

earning.
16 
5.1. Quantitative

Quantitative evaluation metrics are specific to tasks where the
performance of a policy can be directly measured. These approaches
are divided into two categories: online and off-policy evaluation, with
online evaluation being more common. After training the policy, a
set of 𝑁 online rollouts 𝜏1,… , 𝜏𝑁 are performed on the environment,
and a metric is applied to these rollouts. A rollout is the sequence of
transitions generated by selecting actions from the current policy and
obtaining the next state and reward from the transition and reward
functions, respectively: 𝜏𝑖 = (𝑠0, 𝑎0, 𝑟0),… , (𝑠𝐻 , 𝑎𝐻 , 𝑟𝐻 ), where 𝐻 is the
length of the trajectory. The most common measurement of online
performance is the average success rate of the policy at performing the
task 𝐽 (𝜋) =

∑𝑁
𝑖=0 G(𝜏𝑖)
𝑁 , where G is 1 if the trajectory completed the task

and 0 otherwise. For example, in [87], the success is determined by
whether the ball falls inside the cup or outside.

If a reward function is available, the performance of the model
can be measured by the accumulated rewards of a rollout [3]: 𝐽 (𝜋) =
∑𝐻
𝑡=0 𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1). Similarly, the average or maximum accumulated

rewards over multiple rollouts can also be used as performance met-
rics. In video games, a similar approach involves obtaining the score
directly from the environment and using it as an evaluation metric.
For example, in [51], performance can be evaluated by the distance
traveled.

Alternatively, if the goal is to closely imitate the teacher, the per-
formance measurement can be the distance between the agent’s actions
and the teacher’s actions [156]. This can be quantified through clas-
sification or regression error for discrete or continuous action spaces,
respectively: 𝐽 (𝜋) = ∑

(𝑠𝑖 ,𝑎𝑖)∈𝐷𝑑𝑒𝑚𝑜 ‖𝜋(𝑠𝑖) − 𝑎𝑖‖.
Time can also be used as an evaluation metric. This can include the

time taken to execute a task or the time to converge during learning,
such as the number of training steps. For instance, in [115], RoboCup
soccer agents were simulated with the goal of keeping the ball away
from the opposing team. Thus, the duration for which the ball is kept
away from the enemy team can serve as a performance metric.

Another way to evaluate a policy’s performance online is by mea-
suring the safety of the method. Safety metrics can include the length
of the episode (the number of transitions) or defining a set of safety
constraints and counting the number of times the agent violated the
constraints. This can be done by associating certain states with violation
occurrences or by defining violations separately from the state space
and checking for any violations after the agent executes an action.
In [64], an advisor agent aims to prevent the main agent from violating
constraints that could cause damage during learning. The challenge
with online evaluation is that it relies on interactions with the environ-
ment, which can be dangerous. This makes it problematic to evaluate
a policy while learning, because it might be too dangerous to deploy.

Demonstration learning inherits challenges from ML, particularly
in determining the optimal hyper-parameter values. Identifying these
ideal values before or early in the training process saves time and
computing resources by reducing the need for repeated experiments
with different value sets. Furthermore, selecting appropriate hyper-
parameters can help prevent dangerous interactions after deployment.

Off-policy evaluation (OPE) involves evaluating a policy using past
experience, which can come from demonstration data sets, memories
of online interactions, or a combination of both. In [157], various
OPE methods are reviewed for selecting hyper-parameter values. Most
demonstration learning methods do not use OPE and evaluate perfor-
mance on a set of pre-defined hyper-parameters. The choice of these
parameters is often influenced by state-of-the-art practices, small ab-
lation studies, past methods, or random selection. Alternatively, some
approaches train the model using multiple sets of hyper-parameter
values to find better configurations.

OPE methods rely on a dataset of past interactions, 𝐷𝑑𝑒𝑚𝑜, and
an optimization objective, 𝐽 (𝜋). Some OPE methods use the transi-
tion function 𝑃 (𝑠 ∣ 𝑠 , 𝑎 ) and the reward function 𝑅(𝑠 , 𝑎 , 𝑠 ) to
𝑡+1 𝑡 𝑡 𝑡 𝑡 𝑡+1
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Table 3
Summary of the available benchmarks for demonstration learning methods. RLU stands for RL Unplugged, and Sim. for simulation.

Benchmark Data set Action space State space Dynamics Observability Type

AI Habitat Included Discrete Continuous Deterministic Full Sim.
Adroit D4RL Continuous Continuous Deterministic Full Sim.
ALE No Discrete Visual/Cont. Stochastic Full Sim.
Atari RLU Discrete Visual/Cont. Stochastic Full Sim.
BSuite No Discrete Continuous Deterministic Full Sim.
DM Control RLU Continuous Continuous Both Full Sim.
DM Lab No Continuous Visual/Cont. Deterministic Partial Sim.
DM Locomotion RLU Continuous Visual Deterministic Both Sim.
Google Research Football No Discrete Continuous Deterministic Full Sim.
Gym-MuJoCo D4RL Continuous Continuous Deterministic Full Sim.
Gym-Retro No Discrete Visual/Cont. Stochastic Full Sim.
Meta-World No Continuous Continuous Stochastic Full Sim.
MineRL Included Both Visual Deterministic Partial Sim.
RWRL No Continuous Continuous Deterministic Full Sim.
RoboTurk Included Continuous Continuous Stochastic Both Real/Sim.
evaluate the policy. If these are not available for the current prob-
lem, model-based methods estimate a dynamics model 𝜓(𝑠𝑡, 𝑎𝑡) ∼
(𝑠𝑡+1 ∣ 𝑠𝑡, 𝑎𝑡) and a reward function through IRL �̂�(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1). Using

he transition function, reward function, and the actions selected by
he current policy 𝜋, we can calculate the expected return: 𝐽 (𝜋) =
𝑎𝑡∼𝜋(𝑠𝑡),𝑠𝑡+1∼𝑃 (𝑠𝑡 ,𝑎𝑡)[

∑𝐻
𝑡=0 𝛾

𝑡𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)].
Alternatively, instead of relying on a transition and reward function,

e can estimate a state–action value function 𝑄(𝑠, 𝑎) by minimizing the
ellman error using the dataset 𝐷𝑑𝑒𝑚𝑜 and the current policy 𝜋. In this
pproach, the OPE objective is to evaluate the expected accumulated
ewards as given by the state–action value function, expressed as:
(𝜋) = E(𝑠,𝑎)∼𝐷𝑑𝑒𝑚𝑜 [𝑄(𝑠, 𝑎)].

An extension of this evaluation method involves weighting the
mportance of each reward using importance sampling [158]. In this
pproach, the weights are derived by first estimating a policy from
he demonstration data set through BC, denoted as 𝜋𝐵𝐶 . A common
eighting scheme involves calculating the ratio of the product of the
robabilities of the actions under the current policy to the product of
he probabilities under the behavior policy, given by: 𝑤 =

∏𝐻
𝑡=0 𝜋(𝑎𝑡 ∣𝑠𝑡)

∏𝐻
𝑡=0 𝜋𝐵𝐶 (𝑎𝑡 ∣𝑠𝑡)

.
The weights can be used to regulate the original objective as such:
𝐽 (𝜋) = E𝑎𝑡∼𝜋(𝑠𝑡),𝑠𝑡+1∼𝑃 (𝑠𝑡 ,𝑎𝑡)[𝑤

∑𝐻
𝑡=0 𝛾

𝑡𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)].

5.2. Qualitative

Qualitative metrics are used for tasks where the agent’s behavior
is more important than the performance it achieves. As previously
mentioned, some applications require the agent to simulate human-
like behavior, which can be challenging to quantify objectively. One
approach to evaluating this believability is to involve multiple judges,
each assessing and scoring the agent’s behavior based on their own
analysis. This method leverages diverse perspectives to gauge how
convincingly the agent mimics human actions.

In [159], the authors explored various methods for generating
controllers that best replicate human behavior. Although these methods
were evaluated using the ‘‘Super Mario Bros’’ game, they are applicable
to a range of other tasks. The evaluation was conducted qualitatively,
where users were shown pairs of gameplay sequences-one performed by
a trained controller and the other by a human. The users were asked
to identify which gameplay was performed by a human for each pair.

6. Benchmarks

The demonstration data set is often gathered from rollouts of a
policy that was trained using an RL algorithm. Alternatively, a hu-
man demonstrator can interact with the environment and generate
demonstrations. Hence, online RL benchmarks can be employed for
demonstration learning in these scenarios. We summarize the available

benchmarks in Table 3.
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AI Habitat is a simulation platform designed for the research and de-
velopment of embodied agents in an efficient 3D environment, with the
goal of transferring learned skills to real-world applications. Another
benchmark is BSuite [160], which offers a diverse set of experiments
to evaluate the capabilities of learning methods. This library automates
the evaluation process across nine varied environments. DeepMind’s
(DM) Control Suite [161] is a benchmark that provides a collection of
RL environments built on the MuJoCo simulator. It includes tasks for
controlling a variety of agents, such as Acrobot, Ball-in-Cup, Cart-Pole,
Cheetah, Finger, Fish, Hopper, Humanoid, Manipulator, Pendulum,
Point-Mass, Reacher, Swimmer, and Walker, with state spaces that are
non-visual. DM Lab [162] is a 3D learning environment built on the
Quake III Arena game. It challenges agents with visual observations
and complex 3D navigation and puzzle-solving tasks. One of the most
widely used visual benchmarks is OpenAI’s Gym, which includes envi-
ronments for training agents to perform various tasks such as walking
with a Humanoid agent, similar to DM Control Suite, using MuJoCo.
Gym additionally offers environments for classic Atari games. Gym
Retro extends the OpenAI Gym framework by providing environments
for over 1000 classic games. Google Research Football [163] introduces
a novel RL environment with a physics-based 3D football simulation.
This benchmark allows agents to control either a single player or an
entire team, making it suitable for multi-agent and multi-task learning
scenarios.

Meta-World [164] is a benchmark designed for meta-RL and multi-
task learning, featuring 50 distinct robotic manipulation tasks. Meta-
learning algorithms can acquire new skills more quickly, by leveraging
prior experience to learn how to learn. The Real-World Reinforcement
Learning (RWRL) Suite [165] identifies nine challenges that prevent
RL agents from being applied to the real-world. It also describes a
framework and a set of environments to evaluate the method’s potential
applicability to the real-world.

In practical applications, such as the real-world, we do not have
access to a policy. In such scenarios, the data might come from non-
Markovian agents, such as humans, which differs significantly from
the data generated by online RL policies Consequently, the data sets
generated by the online RL policies are not representative of practical
applications. The field is continuously developing a novel benchmarks
with varying properties to address these challenges. The demonstration
data sets and environments should take into account the properties
explained in Section 3. Continuous action and state spaces are gen-
erally more challenging than discrete ones, since it is impractical to
explore every possible state and action. Therefore, an agent that learns
in such domains is obligated to generalize beyond the visited data.
Furthermore, visual observations are considered more challenging than
non-visual observations. Another common real-world issue is the occlu-
sion of state representations, which results in partially observable states
and turns the problem into a POMDP. This scenario is significantly
harder and closely mirrors real-world situations where complete state
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Fig. 7. Agents and areas demonstration learning methods can be applied to.

nformation is rarely available. Lastly, real-world environments are
ften stochastic rather than deterministic. Thus, environments that
ncorporate stochastic transition functions are generally more desirable
or evaluating methods.

The D4RL benchmark [166] provides demonstration data sets for
penAI Gym’s MuJoCo tasks. These data sets come from human demon-

trations and vary in quality levels such as random, medium, and ex-
ert. The RL Unplugged benchmark [167] provides demonstration data
et for four different suites: Arcade Learning Environment (ALE) [168],
eepMind Control Suite [161], DeepMind Locomotion [169], and the
eal-World Reinforcement Learning Suite [165]. The disadvantage is

hat the data sets of RL Unplugged are obtained from online RL policies.
his means they lack the desirable non-Markovian properties which
rise from human-generated data.

MineRL [170] is a benchmark built on top of the game Minecraft.
he benchmark includes a wide array of tasks, including finding a
ave, creating a pen, making a waterfall, building a house, and lo-
ating a diamond. These tasks are characterized by their sequential
ature, which presents significant challenges for learning algorithms,
uch as sparse rewards and long horizons. The benchmark provides a
arge demonstration learning data set with over 60 million frames of
ecorded human gameplay.

For real robots, RoboTurk [171] provides the largest collection of
emonstration data sets of a variety of real-world robots performing
iverse manipulation tasks. The data set is increased through crowd-
ourcing. It also provides a framework for generating demonstrations
or a personal robot controlled through teleoperation using a phone.

The Deep Off-Policy Evaluation (DOPE) benchmark [172] offers a
tandardized framework for the evaluation and comparison of various
PE algorithms. Because it is not a benchmark to evaluate demonstra-

ion learning methods, it is not included in Table 3. This benchmark
s structured into two main suites: DOPE RL Unplugged and DOPE
4RL. DOPE allows the selection of different learning objectives, such
s ensuring the estimated value of a policy is as close as possible to the
rue value, selecting the best possible policy from a set of policies, and
yper-parameter tuning with early stopping.

In Table 4, we categorize various demonstration learning methods.
he table organizes the methods based on key attributes: the demon-
tration technique used to obtain the data set; the type of input data
sed to train the method; the learning objective (e.g., policy learning);
he type of inference type (classification, regression, or both); the
etrics used to evaluate the method; and the tasks the method was

pplied to.

. Applications

Demonstration learning approaches have been successfully applied

o a wide range of domains, as illustrated in Fig. 7. This section provides
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a detailed exploration of these applications, highlighting a selection of
relevant examples. The primary applications of demonstration learning
are robotics and simulation environments. RL can learn complex skills
but at the cost of interaction with the environment which can be
dangerous or expensive in real-world scenarios. Moreover, the sample
inefficiency of RL requires millions of interactions even for simple tasks
in the real-world. For this reason, demonstration learning can be critical
for applying policy learning algorithms to real-world settings.

7.1. Assistive robots

Demonstration learning can be applied to assistive robots which aim
to help humans in their daily tasks. This application presents unique
challenges, because these robots must be capable of adapting to a wide
range of scenarios that the untrained human may require. In [117],
the authors adapt the training process to account for the dynamic and
evolving behavior of humans. Robots may be used to interact with
humans [48] or help with social or mental problems [207]. Assistive
robots likely have to imitate how a human would assist, which is
something that demonstration learning can provide over RL.

7.2. Autonomous navigation

Self-driving cars have been a central focus of ML research in recent
years. The goal is to use the data captured from a wide range of
sensors to control the vehicle safely in complex environments. Given
the immense complexity and high dimensionality of the problem, RL
represents a viable solution by learning from interactions. However, the
unsafe characteristics of RL represent an obstacle, as the consequences
of unsafe driving are catastrophic. Demonstration learning avoids this
problem since the agent does not have to interact with the environment
to learn.

Early research in [208] proposes a method for learning to fly an
aircraft from demonstrations recorded via teleoperation using IRL.
Demonstration learning has also been applied successfully to
autonomous aerial navigation, such as drones for their potential for
the delivery of goods, and helicopters. In [29] and in [9], data of
a robot helicopter flight, using a joystick, was recorded and used to
train an autonomous helicopter agent through RL and apprenticeship
learning, respectively. With advances in sensors for capturing data,
demonstration learning has been increasingly used to learn control
policies. Beyond aerial applications, demonstration learning has also
been employed for the locomotion of bipedal and quadrupedal robots.
The demonstrations for training such robots are obtained either by
teleoperation or observation. Some works have applied demonstration
learning to driving tasks [58,101,173]. [209] collected a dataset for
navigation tasks using a camera mounted on a robot. In [57], the
authors evaluated active learning techniques based on demonstrations
in both simulated and real-world environments. Similarly, [83] utilized
a mobile robot to gather environmental data and select appropriate
algorithms from a pre-defined database based on situational context.
Full autonomous control of a vehicle in the real-world is such a complex
problem that it likely cannot be solved using a single field of ML.
Nonetheless, demonstration learning offers tremendous potential to
learn skills from data, without having to interact with the dangerous
environment of driving in the real-world.

RobotCar [210] and BDD100K [211] are large data sets containing
real-life driving demonstrations in the form of videos. Demonstrations
have been used towards autonomous driving in [1,177,191,212]. The
safety of demonstration learning can be used to employ RL methods
to autonomous driving. For example, in [47,68,195] the agent cannot

violate safety constraints learned from demonstrations.
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Table 4
Categorization of Demonstration Learning papers.

Name Year Technique Data Learned goal Inference Evaluation Benchmark

Abeel et al. 2004 [173] 2004 Teleoperation Raw Data IRL Regression Acc. Reward Grid World Car
Driving Simulation

ABPS [174] 2021 N/A N/A Policy Learning Classification Acc. Reward Custom Grid World
Align-RUDDER [175] 2022 N/A Raw Data Policy Learning,

IRL
Regression Succ. Rate Minecraft

AOG [43] 2017 Sensors on
Teacher

Sensor data, Image Classification Classification Succ. Rate Water bottle
opening

APE-V [116] 2022 Teleoperation Raw Data Policy Learning Regression Acc. Reward, Succ.
Rate

D4RL, Procgen
Mazes

APID [75] 2013 Teleoperation Raw Data Policy Learning Regression Time, Acc. Reward Path Finding
AQuaDem [86] 2021 Teleoperation Raw Data Policy Learning Classification Acc. Reward, Succ.

Rate
D4RL

ARC [132] 2018 N/A Image Policy Learning,
IRL

Regression Acc. Reward Navigation, Robot
Pushing

ATAC [126] 2022 Teleoperation Raw Data Policy Learning Regression Acc. Reward D4RL
ATC [130] 2021 Observation Image Policy Learning Regression Acc. Reward, Train

Time
DM control, Atari,
DM Lab

AT-Net [56] 2020 Teleoperation Image Policy Learning Regression Alignment Error,
Accuracy, Succ. Rate

Manipulation

AWAC [152] 2020 Teleoperation Raw Data Policy Learning Regression Acc. Reward, Succ.
Rate

Simulated, Real
Robot Manipulation

AWR [151] 2019 Teleoperation Raw Data Policy Learning Regression Acc. Reward OpenAI Gym,
Simulated Robot

BCQ [6] 2019 Teleoperation Raw Data Policy Learning Regression Acc. Reward OpenAI Gym
MuJoCo tasks

BEAR [149] 2019 Teleoperation Raw Data Policy Learning Regression Acc. Reward OpenAI Gym
MuJoCo

BRAC [150] 2019 Teleoperation Raw Data Policy Learning Regression Acc. Reward OpenAI Gym
MuJoCo

BREMEN [93] 2020 Teleoperation Raw Data Model-Based
Policy Learning

Regression Acc. Reward, KL
Divergence

OpenAI Gym
MuJoCo

CDS [176] 2021 Teleoperation Raw Data Policy Learning Regression Acc. Reward, KL
Divergence

MuJoCo,
Meta-world

ChauffeurNet [177] 2018 Teleoperation Sensor data Policy Learning Regression Distance Error CARLA driving
simulator

CIC [136] 2022 N/A N/A Policy Learning Regression Acc. Reward Mujoco, Simulated
Jaco Robot

CLfD [129] 2022 Observation Image Policy Learning Regression Alignment Error,
Success Rate, Acc.
Reward

Simulated Panda
Manipulation

Coarse-to-Fine IL [178] 2021 Observation Image Policy Learning Regression Error, Succ. Rate Target Reaching
Codevilla et al.
2018

[1] 2018 Teleoperation Sensor data Policy Learning Regression Succ. Rate, Missed
turns, Interventions,
Infractions

Real Truck Driving

Confidence-
Based
LfD

[57] 2007 Teleoperation Raw Data GMM Classification Accuracy, Collision
Rate

Custom Simulation

Context-Aware
Translation

[39] 2018 Observation Image Policy
Learning,IRL

Regression Error, Succ. Rate MuJoCo
Manipulation

COPO [179] 2022 Teleoperation Raw Data Policy Learning Regression Acc. Reward, Cost,
Violations

Walk-Around-Grid,
Bipedal Walker

COMBO [94] 2021 Teleoperation Raw Data Model-Based
Policy Learning

Regression Acc. Reward, Model
Error

D4RL

CORRO [180] 2022 Teleoperation Raw Data Policy Learning Regression Acc. Reward Mujoco
CQL [79] 2020 Teleoperation Raw Data Policy Learning Regression Acc. Reward, Value

Error
D4RL

Cross-Context IL [88] 2020 Observation Image Policy Learning Regression Distance, Succ. Rate Manipulation
CSI [104] 2013 Teleoperation Raw Data IRL Both Acc. Reward Mountain Car,

Driving Simulator
CVaR [125] 2022 N/A N/A Policy Learning Regression Acc. Reward Custom Grid World
CVPO [47] 2022 N/A N/A Policy Learning Regression Cost, Acc. Reward Custom Simulation

Tasks
DAgger [51] 2011 Teleoperation Raw Data Policy Learning Classification Falls, Distance Traveled Super Tux Kart,

Super Mario Bros.
Dalal et al. 2018 [68] 2018 Teleoperation Raw Data Policy Learning Regression Acc. Reward, Violations Custom MuJoCo

tasks
DIS [106] 2016 Teleoperation Raw Data Policy Learning,

IRL
Regression Acc. Reward Maze, Mario AI

DQfD [3] 2018 Teleoperation Image Policy Learning Classification Acc. Reward ALE
DQN [4] 2015 N/A N/A Policy Learning Classification Acc. Reward Atari
Dogged Learning [24] 2007 Teleoperation Raw Data, Image Other Predictive

Learning
Both Student visual

inspection, Error
Ball seeking, head
mirroring tail

DoubIL/ResiduIL [70] 2022 Teleoperation Raw Data Policy Learning Regression Loss OpenAI Gym
DT [139] 2021 Teleoperation Raw Data Sequence Model Regression Acc. Reward Atari, OpenAI Gym

(continued on next page)
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Table 4 (continued).
DWBC [120] 2022 Teleoperation Raw Data Policy Learning Regression Acc. Reward,

Discriminator Accuracy
D4RL

EnsembleDAgger [181] 2019 N/A N/A Policy Learning Regression Acc. Reward OpenAI Gym
ExORL [182] 2022 Teleoperation Raw Data Policy Learning Regression Acc. Reward DeepMind control

suite
GAIL [46] 2016 Teleoperation Raw Data GAIL Regression Acc. Reward MuJoCo
GCB [137] 2022 Observation Image Policy Learning Regression Succ. Rate Pybullet
Gradient-Based
IRL

[105] 2021 Observation Image Model Learning,
IRL

Regression Train Time, Distance Teaching

GTI [183] 2021 Teleoperation Raw Data Policy Learning Regression Succ. Rate,
Generalization

Manipulation

Guo et al. 2022 [77] 2022 Observation Image Policy Learning Regression N/A N/A
HAMMER [50] 2005 Observation Image Bayesian Belief Regression N/A N/A
Hayes et al.
2014

[38] 2014 Observation Image Active learning Regression Execution Paths Lego Montage

HDT [141] 2022 Teleoperation Raw Data Sequence Model Regression Acc. Reward UR3 Reaching,
D4RL

IRIS [184] 2020 Teleoperation Raw Data Policy Learning Regression Succ. Rate, Acc.
Reward, Traj. Length

Graph Reach,
RoboTurk,
Robosuite

Ijspeert et al.
2002

[11] 2002 Sensors on
Teacher

Sensor Data LWR Regression Error Tennis Swings

ILEED [78] 2022 Teleoperation Raw Data Policy Learning Regression Acc. Reward Simulated Minigrid
tasks

LazyDAgger [185] 2021 N/A N/A Policy Learning Regression Acc. Reward,
Interventions

MuJoCo

Levine et al.
2016

[53] 2016 N/A Image Policy Learning Regression Distance, Succ. Rate,
Error

Manipulation

Levine et al.
2018

[186] 2018 Observation Image Policy Learning Regression Failure Rate Manipulation Task

LDM [80] 2022 Teleoperation Raw Data Policy Learning Regression Acc. Reward, Succ.
Rate

OpenAI Gym
MuJoCo,
SimGlucose

LTSD [187] 2019 Teleoperation Raw Data Policy Learning,
IRL

Regression Acc. Reward BiMGame,
AntTarget, AntMaze

LfMD [10] 2015 Teleoperation Point Cloud Other N/A Succ. Rate Pick Place, Towel
Folding

Maeda et al.
2017

[33] 2017 Kinesthetic Sensor Data Policy Learning Regression Distance Error Manipulation Tasks

MAGIC [96] 2016 N/A N/A Policy Learning
(OPE)

Regression Regression Error ModelFail/Win,
Maze, Mountain
Car, Cart

Max. Ent. IRL [101] 2008 Sensors GPS Data IRL N/A Matching Path Following
MBPO [90] 2019 N/A N/A Policy Learning

(OPE)
Regression Acc. Reward,

Regression Error
MuJoCo

MERLION [89] 2021 Teleoperation Raw Data Policy Learning Classification Acc. Reward Maze, Dialogue,
Recommendation

MIR [188] 2021 Observation Image Policy Learning Regression Succ. Rate MuJoCo,
Manipulation

MOPO [92] 2020 Teleoperation Raw Data Model-Based
Policy Learning

Regression Acc. Reward D4RL

MOReL [91] 2020 Teleoperation Raw Data Model-Based
Policy Learning

Regression Acc. Reward OpenAI Gym
MuJoCo

Motion2Vec [189] 2021 Kinesthetic,
Observation

Robot Data, Image HMM Regression Loss, Segmentation
Accuracy, Noise

Pick-and-Place,
Suturing

MRDR [95] 2018 N/A N/A Policy Learning
(OPE)

Regression Regression Error ModelFail/Win,
Maze, Mountain
Car, Cart

Mülling et al.
2013

[102] 2013 Kinesthetic Raw Data LWR Regression Cost, Succ. Rate, Acc.
Reward

Tennis Swings

Multi-AMP [121] 2022 Observation Image Policy Learning Regression Stand Duration 4 Legged Robot
Movements

MVP [190] 2022 Observation Image Policy Learning Regression Succ. Rate PixMC
ODT [142] 2022 N/A Raw Data Policy Learning Regression Acc. Reward D4RL
Pan et al. 2017 [191] 2017 Teleoperation Sensor data, Image Policy Learning Regression Speed, Succ. rate AutoRally
PC-GMM [74] 2020 Teleoperation Raw Data GMM, GMR, RL Regression Succ. Rate, Error Peg-in-Hole
PEMIRL [123] 2019 Teleoperation Raw Data IRL Regression Acc. Reward MuJoCo
PI2-ES-Cov [35] 2020 Kinesthetic features from point

cloud
Policy Learning Regression Succ. Rate Simulated, Real

Robot Manipulation
Pinto et al. 2016 [192] 2016 Observation Image Policy Learning Regression Accuracy Manipulation Task
PTS [113] 2015 N/A N/A IRL Regression Score Mounting Car 3d,

Cart Pole, Mario

(continued on next page)
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Table 4 (continued).
Recovery RL [193] 2021 Teleoperation Raw Data Policy Learning Regression Succ. Rate, Violations Simulated task, Real

Robot
REPaIR [194] 2020 Teleoperation Raw Data Policy Learning Regression Acc. Reward, AUC,

Accuracy
Robot Reaching

Rhinehart et al.
2018

[195] 2018 Teleoperation Raw Data Model-Based
Policy Learning

Regression Succ. Rate,
Classification Metrics

CARLA driving
simulator

RLfD [107] 2015 Teleoperation Raw Data Policy Learning,
IRL

Regression Acc. Reward Mario AI, Cart Pole

RIS [196] 2021 N/A N/A Policy Learning Regression Acc. Reward, Distance,
Succ. Rate

Navigation,
Manipulation

RPL [197] 2019 Teleoperation Raw Data Policy Learning Regression Succ. Rate MuJoCo
RUDDER [198] 2019 N/A Raw Data Policy Learning,

IRL
Regression Acc. Reward Atari

Ruppel et al.
2020

[45] 2020 Sensors on
Teacher

Sensor Data Sequence Model Regression Succ. Rate, Error Manipulation

S4RL [59] 2022 Teleoperation Image Policy Learning Regression Acc. Reward D4RL, MetaWorld,
RoboSuite

SafeDAgger [199] 2017 Teleoperation Raw Data Policy Learning Regression Score, Safety, loss TORCS Driving Car
SAILR [48] 2021 N/A N/A Policy Learning Regression Acc. Reward,

Constraints
Point Robot, OpenAI
Gym MuJoCo

SAM [122] 2019 Teleoperation Raw Data GAIL Regression Acc. Reward MuJoCo
SCIRL [103] 2012 Teleoperation Raw Data IRL Classification Acc. Reward Highway
Sepsis Treatment [200] 2017 N/A N/A Policy Learning Classification Mortality MIMIC-3.
Silver et al.
2010

[100] 2010 Kinesthetic Raw Data LWR Regression Cost, Loss, Distance,
Speed

Navigation

SMILe [58] 2010 Teleoperation Raw Data Policy Learning Regression Falls, Distance Mario Bros
SPiRL [201] 2020 Teleoperation Raw Data Policy Learning Regression Succ. Rate D4RL
SQUIRL [124] 2020 Observation Image Policy Learning,

IRL
Regression Succ. Rate Pick-Carry-Drop,

Pick-Place
SRL-RNN [202] 2018 N/A N/A Sequence Model Both Estimated Mortality MIMIC-3.
SWIRL [203] 2019 Teleoperation Raw Data Policy Learning Regression Acc. Reward RCCar, Acrobot
SWITCH [97] 2017 N/A N/A Policy Learning

(OPE)
Regression Regression Error UCI data sets

TCC [133] 2019 Observation Image Representation
Learning

N/A Classification Accuracy,
Kendall’s Tau

Pouring and Penn
action data sets

TCN [55] 2018 Observation Image Policy Learning Regression Alignment Error,
Classification Error,
Acc. Reward

Pouring

TD3+BC [153] 2021 Teleoperation Raw Data Policy Learning Regression Acc. Reward D4RL
TPIL [204] 2021 Observation Image Policy Learning Regression Alignment Error, Loss PyBullet, Minecraft
UCT [52] 2014 Teleoperation Image Regres-

sor/Classifier
Both Score ALE

UDS [63] 2022 Teleoperation Raw Data Policy Learning Regression Acc. Reward D4RL
visual MPC [205] 2018 Observation Image Model-Based

policy learning
Regression Regression Error, Succ.

Rate,
Manipulation Task

Weak Label LfD [32] 2020 Teleoperation Sensor Data, Image Classifier Classification Effort Manipulation
Yang et al. 2022 [206] 2022 Teleoperation Raw Data Policy Learning,

GAN
Regression Acc. Reward D4RL
7.3. Manipulators

Demonstration learning has been applied to manipulators in manu-
facturing applications since the 1980s. Training manipulators through
demonstrations, usually through kinesthetic teaching, is more efficient
than hard-coding their behavior. One prominent application of this
technology is in assistive and healthcare robotics, where robots are
designed to help humans with various tasks. ML methods are used
for such tasks because the robot must perform effectively in diverse
environments. Training a policy to generalize to new scenarios is more
practical than coding every possible situation manually. Additionally,
since assistive robots operate in close proximity to humans, there is a
greater emphasis on safety, which is enhanced through the convergence
and stability guarantees of learned policies compared to hard-coded
behaviors. Furthermore, effective collaboration requires the desired
robotic movements to be similar to those of humans. Moreover, ef-
fective collaboration with humans necessitates that robotic movements
closely mimic human actions, making demonstration learning a good
approach for developing such behaviors in the policies.

Several studies have utilized demonstrations for learning robotic
grasping [186,192]. Examples of demonstration learning methods ap-
plied to such robots include handing over objects to humans in [213],
21 
where the authors encode coordination from demonstration data to
enable humans to transfer control of objects to other entities. Addition-
ally, a model-based algorithm [205] learns a variety of manipulation
skills.

Policies for learning manipulation tasks have the potential to re-
place humans in healthcare. However, this raises significant safety
concerns, as exploration required by RL is impractical [214]. In [2],
the authors train multiple robotic arms to perform surgical tasks us-
ing trajectories learned from demonstrations. Later, [215] applies a
model-based method for the treatment of lung cancer. The MIMIC-
III dataset [216], which contains 60,000 Intensive Care Unit (ICU)
records, has been used for drug recommendations [200] and sep-
sis treatment [202] by leveraging demonstrated treatment processes
from the data set. The automation of healthcare through demonstra-
tion learning has the potential to optimize procedures and improve
outcomes.

7.4. Humanoid robots

Humanoid robots are perhaps the most obvious application of
demonstration learning. These are robots with a structure similar
to humans whose goal is to perform tasks typically carried out by
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Table 5
Summary of the advantages and disadvantages of demonstration learning methods.

Advantages

Diverse and flexible: can be combined with other paradigms.
Data efficiency: faster convergence from fewer data over reinforcement learning.
Performance guarantees: the method will at least be as good as the demonstrations.
Reduction of programming load: no need to program the model’s decision for every case.
Safety: the agent learns without interacting with the environment.
Simplification: demonstrate the task and estimate a policy with a SOA method.

Disadvantages
Creation of the data set: difficult to create large numbers of high quality demonstrations.
Distributional shift: generalize from the data set or remain inside its distribution.
Quality of the data set: performance relies heavily on the demonstrated behavior.
people. Since the required tasks are already performed by humans,
demonstration learning is a fitting approach. Demonstrations can be
captured using a sensor suit and converted into joint values for the
robot. The tasks vary from utilizing only part of the robot [217] to
engaging the entire humanoid body [218,219].

In [11], a humanoid robot was trained from human demonstrations
captured by sensors placed directly on the human body to perform
reaching and drawing movements with one arm, as well as tennis
swings. In [36], a humanoid robot learned to imitate human arm
gestures and was tested in a turn-taking gesture game. A human tele-
operated a humanoid robot in [9], where Virtual Reality technology
was used to convert the operator’s arm and hand motions into those
of the robot to learn a manipulation policy. In [55], an embedding
space was learned from demonstrations, allowing the humanoid robot
to replicate human movements projected into this space. In human–
robot interaction, beyond learning task control, the robot must also
learn where to focus its attention.

7.5. Video games

ML methods, particularly RL, have been successfully applied to
video games. Key applications include creating agents to learn and
master games or generating controllers for non-playable characters.
However, video games often present challenges such as sparse rewards
and high-dimensional spaces, which can hinder policy convergence
during exploration. Additionally, non-playable characters often need to
exhibit human-like behavior [220]. Therefore, demonstration learning
serves as a bridge to reach these goals that RL struggles to achieve.

Demonstration learning has been applied to racing games such as
Mario Bros in [51,159]. The ALE [168] offers a platform for bench-
marking algorithms on Atari games. Approaches such as [3] have used
this environment to evaluate their method and compare them to other
state-of-the-art methods for Atari games. While these examples involve
relatively simple problems with small state and action spaces, they
demonstrate potential that can be extended to more complex games
in the future.

The variety of genres and the growing complexity of video game
domains present challenges increasingly akin to real-world difficulties.
Methods often rely on simulation to validate their correctness due to
safety concerns associated with real-world deployment. However, cre-
ating effective simulators is challenging and often yields inconclusive
results, as the real-world remains more complex. Video games offer a
diverse array of problems for demonstration learning methods to tackle.
Addressing progressively difficult problems in video games provides a
pathway for validation that is closer to real-world scenarios.

8. Advantages and disadvantages of demonstration learning

Different demonstration learning algorithms bring different advan-
tages and disadvantages, which are summarized in Table 5. This section
will explore the overall advantages and disadvantages of demonstration
learning methods.
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8.1. Advantages

The most significant advantage of demonstration learning paradigm
over others is its potential to eliminate the need for expert program-
ming. Although the field has not yet reached this goal, the aim is to
train an agent to perform tasks through demonstrations alone. This
approach enhances adaptability by enabling agents to learn behaviors
from demonstrations rather than being programmed on static instruc-
tions. Demonstrating a manipulation task is often much easier than
detailing every step a robot must take to complete it. Additionally, the
field allows agents to learn from various external sources, including
humans or other agents with different types of hardware.

Additionally, the paradigm is highly data efficient, especially com-
pared to RL which is severely data-inefficient. Several approaches use
a small number of demonstrations. In contrast, RL rely on trial-and-
error interactions to learn optimal policies, resulting in numerous failed
attempts. Demonstration learning allows the agent to learn the task
by providing the correct choices for the input states, thus solving
high-dimensionality problems and effectively addressing the curse of
dimensionality that plagues ML problems suffer from. This property
allows the paradigm to solve high-dimensionality problems and effec-
tively addresses the curse of dimensionality ML problems suffer from.
Furthermore, RL agents’ policies can converge to local minima with
suboptimal performance. In demonstration learning, agents learn the
behavior demonstrated to them, offering performance guarantees for
the policies learned. Then, demonstration learning can be combined
with other ML fields, such as RL, to further enhance the learned
methods.

Lastly, one of the main limitations of RL is that it is difficult to apply
it to real-world problems. The RL agents learn through trial-and-error
interactions, which is ideal for simulation environments. However, in
the real-world, errors can have serious consequences, such as collisions
that may severely damage a robot, hindering or preventing learning al-
together. Demonstration learning is extremely valuable in applications
where interaction is impractical, expensive, or dangerous. It leverages
demonstration data sets to provide interaction data, allowing the agent
to learn without directly interacting with the environment. This ap-
proach ensures much safer learning, making it applicable to real-world
problems. Even when it is safe to interact with the environment, using
demonstrations can speed up convergence and improve generalization
in complex domains. After learning a policy from demonstrations, the
policy can still be improved with online interactions. Since the policy
already possesses task knowledge, it interacts with the environment
more safely compared to a random policy in RL.

8.2. Disadvantages

While demonstration learning is appealing and addresses many
issues associated with RL, it presents challenges when working with
limited data. Technically, any off-policy RL algorithm can be used to
learn from a demonstration data set. However, these algorithms were
originally designed for online RL, where the agent interacts with the
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environment and can correct its mistakes. As a result, these methods
often fall short when applied to limited data.

The disadvantages of demonstration learning are primarily related
to the data set, as discussed in Section 3.7. The quality of the policy is
directly dependent on the quality of the demonstrations within the data
set. Sub-optimal or incorrect demonstrations can hinder or even prevent
the policy from converging to adequate behavior. To address this
issue, existing solutions aim to identify and filter out these sub-optimal
demonstrations.

Additionally, collecting demonstrations is expensive, and the data
set may be insufficient, often lacking coverage of all possible state–
action pairs. Creating the environment with the sensors, demonstrating,
collecting the data, and creating adequate embodiment and record
mappings for the data set, are all non-trivial steps. Then, the distri-
butional shift discussed in previous sections can severely hinder the
performance of the model. The demonstration data set represents only
a subset of the real MDP. Unless the data set is optimal the agent
cannot generalize to cover the entire problem. Hence, when queried
in out-of-distribution states, it will likely fail. Restricting the agent to
in-distribution states to avoid queries for actions it cannot generalize to
from limited data is challenging, and most methods must address this
issue explicitly.

9. Future directions

In this section we will discuss the open research problems in the
field of demonstration learning.

9.1. Benchmarking

The goal of demonstration learning is to teach a real-world agent
a task from demonstrations. However, most methods are evaluated in
simulation environments. There are few standardized benchmarking
environments and data sets, particularly for real-world environments.
Standardization in any research area is beneficial as it facilitates the
comparison of different methods for the same problem, and demonstra-
tion learning is no exception. The lack of a real-world demonstration
learning benchmark is an open issue in the field, limiting its progression
and applicability to real-world tasks.

Current demonstration learning methods are often evaluated using
a limited range of RL environments, frequently creating their own
demonstration data set. A robust method should be able to generalize
across various environments and perform tasks with high repeatability.
Additionally, the method should be computationally efficient and, in
some cases, capable of producing behavior that appears human-like.

Although some environments provide corresponding demonstration
data sets, methods that generate their own data sets create uncertainty
about the method’s quality. The number of demonstrations in the
data set significantly impacts the method’s performance. In real-world
scenarios, collecting demonstrations is challenging, resulting in smaller
data sets. However, some methods utilize large numbers of demonstra-
tions, offering greater coverage of the state–action space, which is a
distinct advantage over methods with smaller data sets. Measuring and
comparing the quality of demonstrations across different data sets is
difficult. It is reasonable to assume that two different data sets will
vary in quality. Consequently, the performance of a method is directly
proportional to the quality of the demonstrations used.

Existing stochastic environments are very limited. Additionally,
non-stationary environments, which are very common in the real-
world, are also scarce, with the notable exception of the RWRL suite.
Additionally, there is a lack of available multi-agent environments
and data sets. To address these gaps, future research should focus on
creating more standardized environments, demonstration data sets, and
evaluation metrics, and encourage their usage.
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9.2. Context problem

The context encompasses the set of characteristics that define the
environment, such as background objects, illumination, and camera
positioning. Most demonstration learning methods are designed to learn
a policy for a single, fixed context. When any of these contextual
elements change, they form a new context, and the policy trained for
the original context is often unable to perform effectively in the new
one. This issue is frequently overlooked because evaluation is typically
conducted in simulation or controlled environments where the context
remains consistent with the training conditions, allowing the policy
to succeed. However, this limitation severely affects the scalability of
the policy for real-world applications, where context changes can be
drastic.

9.3. Goal specification

Demonstration learning methods focus on learning one specific task
at a time. Pick-and-place tasks, for example, involve picking up an
object from one location and placing it somewhere else. In the liter-
ature, picking a different type of object or placing it in a different
location is often considered a distinct task from the original [124],
despite both being variations of the same fundamental task. As a
result, the effort required to train an agent to handle multiple goals
scales linearly with the number of distinct goals, as a separate policy
must be developed for each one. This approach overlooks the fact
that these tasks share redundancy and common information. Future
research should aim to develop policies that can scale and adapt to
different goals specified by the input, rather than requiring a new policy
for each individual goal.

9.4. General demonstration learning framework

The end goal of demonstration learning is to enable the training of
an agent without the need for expert programming knowledge. Ideally,
an agent should be able to learn the task solely through demonstrations.
However, current approaches still require the design of algorithms for
feature extraction, reward specification based on the type of agent and
task, and policy derivation algorithm. A learning framework that could
be universally applied to any task would allow a teacher to train an
agent solely by demonstrating the task.

9.5. General feature extraction

All demonstration learning approaches rely on the quality of the
data set. In high-dimensional environments, images are the most prac-
tical state representations. Learning from images requires the extraction
of quality features, which currently vary depending on the specific
task. Creating a general feature extractor framework would eliminate
the need for engineered feature extraction frameworks for each task.
This is one of the open problems preventing the creation of a general
demonstration learning algorithm.

9.6. Generalization

The policies should be able to select the correct action for any pos-
sible state. However, since policies are estimated from a demonstration
data set, they are inherently limited to the state–action distribution
present in that data set. Generalization is the ability of a policy to
make correct decisions in unseen scenarios based on previous expe-
riences. To improve generalization, several techniques are employed:
some approaches expand the data set through methods such as data
augmentation [60,61], while others fine-tune the policy using on-
line data [178]. Additionally, some methods restrict the policy to
in-distribution states to prevent it from being queried for actions it has

not been trained on [47].
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9.7. Hyper-parameter selection

Hyper-parameters are a critical aspect of most ML approaches and
must be specified in advance. Examples include determining the num-
ber of hidden layers in a neural network and the number of neurons
in each layer. The ideal values for the hyper-parameters are often
difficult to estimate and are usually determined through trial and error.
As noted by [221], many studies present results based on carefully
tuned hyper-parameters for a limited set of tasks, which are insufficient
for evaluating the robustness of methods. Instead, methods should be
trained multiple times with varying hyper-parameter configurations,
and the resulting policies should be assessed using the proposed metric,
’Expected Validation Performance’.

Performing policy rollouts in real-world settings is generally chal-
lenging due to costs and safety concerns, particularly when evaluating
policies that are still being trained. Evaluating a policy before com-
pleting its training to determine the optimal hyper-parameter values
would allow for adjustments without incurring the full cost of training
a complete policy, thereby saving time and resources. This is another
factor limiting demonstration learning to simulators. Off-policy meth-
ods aim to evaluate a policy from past interactions, without requiring
new interaction with the environment. For example, [222] conducted
a study evaluating thirty-three different OPE methods by measuring
the distance between the estimated policy value compared to the true
policy value. The study concluded that evaluation with the state–action
function outperforms the remaining methods. To help accelerate the
development of OPE methods, [172] propose the DOPE benchmark.
The available options are using inaccurate OPE methods or training the
model for a fixed number of steps and adjusting the values based on the
early results. While hyper-parameter selection is a common challenge
across various machine learning paradigms, demonstration learning
needs to overcome this problem to truly reduce the requirement of
expert programming. We believe that developing general, accurate, and
efficient OPE methods is crucial for the growth of the field and for
expanding its applications to real-world scenarios.

9.8. Long-horizon tasks

Offline RL relies on a reward function to estimate policies. More
frequent rewards make it easier to develop effective policies, but cre-
ating a reward function that provides feedback for every step is often
challenging, especially for complex tasks. As a result, demonstration
learning has been restricted to simple tasks that complete within a few
steps and require minimal interactions. Long-horizon tasks are more
common in real-world scenarios, which consist of either a series of
small interactions or a single extended and complex interaction. These
tasks require a greater number of steps, leading to a more extensive
state space for the agent to explore and learn from. Although learning
to handle long-horizon tasks remains an open challenge, some methods
have achieved partial success in addressing these complex problems.

The method in [183] detects intersections among demonstrations in
the data set at certain states to generalize new trajectories. [187,203]
demonstrate that complex tasks can be decomposed into sub-tasks,
which are learned from the demonstration data set. The agent receives
a reward upon completing each sub-task. [196] estimates a state distri-
bution to ensure that these sub-goals correspond to reachable states. A
particularly promising approach involves using goal-conditioned poli-
cies across multiple layers of hierarchy in RL [223]. Additionally, some
methods generate sequences of sub-goals through a divide-and-conquer
approach [224].

Another approach is to learn an embedding space of skills from
unstructured demonstrations [201] and then train the policy on the
embedding space. In [201], skills are defined as useful sequences

of actions, and an embedding space of these skills is learned from
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unstructured demonstrations. They then train a RL policy on the em-
bedding space using a hierarchical model where the high-level com-
ponent generates embeddings of skills which the decoder then con-
verts into sequences of actions. A particularly promising approach was
proposed, using goal-conditioned policies at multiple layers of hierar-
chy for RL [223]. Alternatively, other methods generate sequences of
sub-goals with a divide-and-conquer approach [224].

Hierarchical approaches learn a high-level planner and a low-level
controller [184,203]. The high-level planner identifies a sequence of
sub-goal states that guide the agent towards the main task goal, while
the low-level controller is conditioned to achieve these sub-goals. This
extra guidance helps the agent learn in sparse reward environments and
long horizon tasks. Conditioning RL and demonstration learning ap-
proaches on goal observations improves sample efficiency. In [196] the
high-level policy is encouraged to predict intermediate states between
the current state and the goal state.

RUDDER [198] redistributes the reward by identifying key steps
in the demonstrations and increasing the reward of the respective
transition. However, RUDDER uses LSTMs to predict the associated
reward and models require many demonstrations to generalize well.
Because of this, Align-RUDDER replaces the LSTM model with a profile
model adapted from bio-informatics. This model can be estimated with
very few sequences. In Align-RUDDER, a sequence is aligned with
the profile, providing an alignment metric that indicates how well
the sequence matches the model. The reward for a transition is the
difference between the alignment values of the sequence with and
without the transition.

9.9. Multi-agent demonstration learning

Most demonstration learning research is focused on single-agent
learning, while real-world applications often require agents to interact
and cooperate with one another. Although there has been some explo-
ration of multi-agent cooperation and competition, as discussed in the
relevant section, the applications of the methods are limited. Hence,
multi-agent demonstration learning remains an open problem.

9.10. Learning from sub-optimal data

Demonstration learning heavily relies on the quality of the demon-
stration data set. In many cases, the data is sub-optimal due to various
factors. Sensor data often contains noise and errors, which can in-
crease the distributional shift between the estimated models and the
demonstrated behavior. Some works address inadequate data through
identification and removal of poor samples [30] or by correcting the
data [194]. Collecting demonstrations is generally expensive, resulting
in small data sets. To mitigate this, some methods use demonstrations
from other tasks, enhancing the policy’s generalization and adaptabil-
ity. For instance, [180] gathers data sets from multiple tasks sharing
the same state and action spaces but differing in reward functions
and dynamics. An encoder is trained to encode trajectories into an
embedding space, and the policy is conditioned on a task embedding
alongside the state. However, using data sets from other tasks can
increase the distributional shift. To address this, [176] proposes a
method to learn policies from multiple task data sets without causing a
distributional shift, by relabeling transitions from the other tasks’ data
sets.

Additionally, the estimated distribution of the policy may differ sig-
nificantly from the demonstrator’s distribution. A larger distributional
shift typically results in poorer generalization of the policy. In [77],
the authors address this mismatch by deriving a tractable bound on the
distributional shift between the offline data set and the learned policy.
This bound is then used as an extra regularization parameter in the
optimization step.

Offline RL requires reward specification which is expensive in

the real-world scenarios. Beyond IRL, unsupervised techniques offer a
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promising direction by leveraging unlabeled data. For instance, [63]
demonstrates that a policy can be effectively learned by combining
large sets of unlabeled data with a smaller set of labeled data. Addition-
ally, [182] introduces a downstream reward labeling method applied
to unlabeled datasets.

9.11. Safety concerns

RL has gained significant attention in recent years due to its diverse
applications. However, its trial-and-error nature can pose safety risks.
In contrast, demonstration learning allows the agent to learn policies
from a dataset without interacting with the environment, remaining
safe while learning. In offline RL, the goal is to maximize the ex-
pected accumulated rewards, while in demonstration learning the goal
is to align action choices with those of the demonstrator. However,
these goals do not take into account safety concerns. Additionally,
the limitations of the data set can result in sub-par policies and the
agent can still reach an unsafe state if it exists the distribution of the
data set. The demonstrator is unlikely to cover all potential safety–
critical scenarios, and the reward function often does not prioritize
safety. Safety is paramount in real-world applications, particularly in
human–robot interaction settings [117,225].

One approach to safe RL is to maintain the agent within a safe
distribution of states. For example, [226] proposes learning a mani-
fold that captures natural variations in the environment and uses a
secondary policy to guide the agent back into the distribution of visited
states. The method in [227] introduces an advantage-based mecha-
nism to determine when the recovery policy should intervene. Existing
RL algorithms address safety by specifying constraints that the agent
cannot violate during execution [47,68,69,193]. For instance, [228]
proposes learning a barrier function that constrains the agent’s policy
to remain within a set of states that do not violate constraints. The
method proposed in [179] initially finds a reward-optimal policy,
which is then projected onto the feasible set of policies that satisfy the
cost constraints. However, these constraints are often task-specific and
agent-specific, making it impractical to specify all the constraints for
every situation. Alternatively, [229] proposes a zero-sum game where
a second player perturbs the agent’s transition probabilities to optimize
the worst-case transitions to produce a more robust policy. Methods
in [48,174] require access to sets of safe and unsafe states to train the
agent safely.

Active learning can address uncertainty. The DAgger framework
trains a student policy by allowing it to query an expert policy [58],
where it learns from data generated by both itself and the expert. Before
each interaction with the environment, a decision rule decides whether
to use the student’s or the expert’s policy. Since selecting the student’s
action early on can be unsafe, SafeDAgger [199] introduces a criterion
that only allows the student to act if the difference between its action
and the expert’s action is below a threshold. EnsembleDAgger [181]
further refines this approach by requiring the prediction of an ensemble
of networks to be below a threshold for the student to act. However,
these algorithms depend on the availability of an expert policy.

Some methods leverage expert demonstration data sets to combine
the advantages of RL and demonstration learning. For instance, [80]
proposes learning a Lyapunov function to ensure the agent’s policy
remains within the distribution of states from the data set. In [230],
the authors use a pre-existing expert policy to filter the agent’s action
if it differs from the expert’s.

10. Conclusion

We have presented a comprehensive survey on demonstration learn-
ing. Demonstration learning reduces the programming overhead by
teaching the agent tasks through demonstrations. The paradigm com-
prises two main phases. The first phase involves collecting and building
the demonstration data set, with key considerations including selecting
25 
the demonstrator, recording the demonstrations, representing the data,
and addressing common data set limitations. The second phase focuses
on extracting the behavior from the data set and training the agent
accordingly.

The main challenge in demonstration learning is the generaliza-
tion to unseen scenarios. Demonstrations only cover a subset of the
distribution, and direct imitation through BC learns this limited dis-
tribution. When the agent encounters out-of-distribution cases, it may
not know how to respond, potentially leading to catastrophic real-world
consequences. To address this, offline RL methods aim to reduce the
distributional shift. Various strategies and mitigations were discussed,
including model learning methods that enable the agent to generate
new transitions without interacting with the environment. Additionally,
methods for refining the behavior were explored, such as trial-and-error
interactions using RL, skill transfer through transfer learning, active
teacher querying, and optimizing behavior with EAs.

Demonstration learning is predominantly used across various types
of robots and video games, with potential applications extending to
diverse domains such as healthcare and industry. The main advantages
of demonstration learning include reduced reliance on expert program-
ming, greater data efficiency than RL, and enhanced safety during
the learning process. Despite these benefits, demonstration learning
requires a good framework to create high-quality demonstration data
sets and accurately estimate the policy.

Demonstration learning is a promising area within the broader field
of ML. This survey has identified several key research challenges, high-
lighting that the development of robust benchmarks and high-quality
data sets are crucial for the field’s advancement. As noted in [18] much
of the success of deep learning is due to large data sets. Even recent
applications still utilize relatively old methods paired with improved
models and large data sets. As explained in this chapter, many of the
problems of current Demonstration learning methods stem from the
limitations of the data sets. Creating more, better and larger data sets
or pipelines for generating such data sets is the fundamental direction
for the success of the field.
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