
A Survey on Task Allocation and Scheduling in Robotic Network

Systems

Saeid Alirezazadeh∗1 and Lúıs A. Alexandre2

1Computer Science and Communication Research Centre-(CIIC), Escola Superior de Tecnologia e Gestão, Instituto
Politécnico de Leiria, Portugal, Building C – Campus 2, Morro do Lena – Alto do Vieiro, 2411-901, Leiria, Portugal.

2NOVA LINCS, Universidade da Beira Interior, Covilhã, Portugal.
1Email id: saeid.alirezazadeh@gmail.com

2Email id: lfbaa@di.ubi.pt

Abstract

Robotic networks are increasingly relied upon to perform complex tasks that require efficient scheduling
and task allocation to optimize processing power, resource management, and energy use. The primary goal in
these systems is to enhance performance by minimizing completion time, energy consumption, and delays,
while maximizing resource utilization and task throughput. Numerous studies have examined different
aspects of task allocation and scheduling, from static approaches to dynamic models that adapt to real-
time conditions. This paper presents a comprehensive survey of the methods and strategies used in robotic
network systems, considering not only traditional approaches but also the role of emerging technologies such
as cloud, fog, and edge computing. We categorize the literature from three perspectives: Architectures and
Applications, Methods, and Parameters. Furthermore, we analyze the limitations of each approach and
propose directions for future research, with a particular focus on scalability, real-world applicability, and the
integration of these technologies in dynamic environments.

Keywords— cloud, fog, edge, robotic network, task allocation, scheduling, load balancing

1 Introduction

Robots are increasingly taking on dangerous tasks and acting as companions that are integrated into various
aspects of human life [1, 2]. Some tasks like carrying a very heavy object, monitoring a wide area or dealing
with a disaster cannot be performed by a single robot. To overcome this limitation, several studies, such
as [3–9], propose that multiple robots can be used to perform tasks cooperatively, in a configuration called
a robotic network. The capacity of a robotic network is limited by the collective capacity of all robots, [5].
Increasing the number of robots can increase the capacity, but it also increases the complexity of the model.
Moreover, most tasks related to human-robot collaboration, such as speech, face, and object recognition, are
very computationally intensive.

Cloud robotics overcomes computational limitations by using the internet to assign tasks and share data in
real time [10]. An important factor in determining the performance of cloud-based robotic systems is deciding
whether to upload a newly arrived task to the cloud, process it on a server (fog computing [11]), or execute
it on one of the robots (edge computing [12]), which is called the allocation problem, see Figure 1. When the
allocation problem is solved, the result is a set of tasks assigned to each processing unit. The scheduling problem
deals with the problem of arranging (scheduling) this set of tasks, given the priority of the tasks, their time
constraints, and the precedence order among the tasks, to answer the question of which task, from the set of
tasks assigned to each processing unit, should be executed first, see Figure 2.

Robotic systems often need to be reconfigured to cope with new tasks. To do this, the tasks must be divided
into smaller subtasks that must be executed in a predefined sequence.

A robotic system is usually designed to perform a few specific tasks. To optimize the execution of the tasks
within the system, it is important to determine the responsible components for each task. The answer to this

∗The work was done when Saeid Alirezazadeh was with C4-Cloud Computing Competence Center, Universidade da Beira Interior,
C4-Estrada Municipal, 506, 6200-284, Covilhã, Portugal. This work has been accepted for publication in the IEEE Internet
of Things Journal https://ieeexplore.ieee.org/document/10742644 with DOI: 10.1109/JIOT.2024.3491944. IEEE allows its
authors to follow mandates of agencies that fund the author’s research by posting the peer-reviewed accepted manuscript versions
of their articles in the agencies’ publicly accessible repositories. No third party (other than authors and employers) may post IEEE-
copyrighted material without obtaining the necessary licenses or permissions from the IEEE Intellectual Property Rights Office or
other authorized representatives of the IEEE.

1

ar
X

iv
:s

ub
m

it/
59

84
11

5
 [

cs
.R

O
]

 7
 N

ov
 2

02
4

https://ieeexplore.ieee.org/document/10742644

question lies in static task allocation. Static task allocation is the process of assigning tasks to different
robots or processing units within a network based on the capabilities of the robots and processing units and
the requirements of the tasks that enable their execution. In this process, the tasks are viewed as sets of basic
subtasks (algorithms) that must be executed in a specific order to accomplish the task at hand. This process
is usually carried out statically, i.e. the assignment of the algorithms is fixed at the beginning and does not
change dynamically during execution, as shown in Figure 1.

In dynamic scenarios, tasks arrive sequentially over time and require real-time decision making to ensure
optimal performance. Dynamic scheduling determines which part of the system is responsible for performing
each task and when each task should be performed. In dynamic scheduling, tasks are assigned and reassigned
to robots based on the current state of the system, such as the availability of robots, task priorities and changes
in the environment. This approach is illustrated in Figure 2. The system continuously adapts to ensure optimal
performance.

Static task allocation can be seen as the first step, determining which robots should perform which tasks
based on predefined criteria such as the precedence relationship between the algorithms required to perform
each task. Scheduling then takes over the dynamic management of these tasks and ensures efficient execution
when conditions change.

Figure 1: In static task allocation, we determine the
set of all algorithms required to perform any task for
which the system is designed. The goal is to deter-
mine which unit should be assigned to each algorithm
for execution so that each individual task can be op-
timally executed by each unit. A is the set of all
algorithms required by the system to perform all the
tasks for which the system is designed, and each of the
tasks is denoted by a DAG with precedence order. Ai

denotes a single algorithm.

Figure 2: In dynamic task allocation (task schedul-
ing), a set of tasks arrives to the system at time t to
be executed. The goal is to determine to which unit
each task should be assigned for execution in order to
optimally complete all requested tasks. Taskt is the
set of tasks that have arrived to the system at time
t, and each of the newly arrived tasks in Taskt is de-
noted by a DAG with precedence order. Ai and Bi

are used to denote algorithms of tasks.

We assume that the system can only perform a finite set of tasks T and that over time a set of tasks Ti, a
subset of T , arrives that must be performed by the system. Figure 3 shows an overview of the approaches to
task allocation.

Allocation and scheduling problems usually involve optimizing one or more parameters such as time, total
energy consumption, total resource consumption, average memory usage, etc., for completing all tasks. If the
problem is limited only to the use of a cloud server, parameters such as load balancing and minimizing the
makespan should be considered.

Task allocation and scheduling are fundamental components of real-world system optimization problems.
One of the most important applications for task allocation and scheduling is manufacturing, where the priori-
tization of resources such as labor, raw materials, and equipment must be optimized based on the urgency of
production schedules [27]. A common scenario is the execution of a series of jobs by robotic systems. A key
challenge in robotic networks is determining the optimal type and number of robots required and efficiently dis-
tributing computational tasks across cloud, fog and edge computing resources. Task allocation and scheduling
aim to answer these questions. Despite advances in these areas, there are still major challenges, especially for
robotic networks operating in dynamic and unpredictable environments. Existing methods often struggle with
issues of scalability, real-time processing and the integration of cloud, fog and edge computing to effectively
optimize robotic systems.

In the context of robotic network systems, cloud computing refers to the use of centralized data centers for
processing tasks. Fog computing involves intermediate nodes (fog nodes) that process data closer to the source
than the cloud, but further away than edge devices. Edge computing refers to the execution of tasks directly
on local devices such as robots or sensors, which can reduce latency and bandwidth usage as processing takes
place close to the data source.

These infrastructures offer varying levels of computing power, latency and bandwidth utilization, which

2

Task allocation problem:
A = {A1, . . . ,Am} and (Ti)i∈N = T1, T2, . . . ,⊆ T

Scheduling (dynamic): Opti-
mal performance for allocating
(Ti)i∈N

Allocation (static): Optimal
performance for allocating A

Without Cloud, [13,14] With Cloud, [15,16] Without Cloud, [17,18] With Cloud, [19,20]

Approach

Optimization, [21,22] Combinatorial, [16, 23]
Reinforcement Learn-
ing, [24,25]

Alternative ap-
proaches, [13, 26]

Figure 3: Overview of approaches to task allocation and scheduling. We exemplify each with two references. T
is a finite set of tasks, A is the set of all algorithms that the system needs to perform all tasks in T for which
the system is designed. All tasks in T can be completed by executing some algorithms from A with a certain
order of precedence. Ti ⊆ T is the set of tasks arriving in the system at time step ti, where t1 < t2 < . . . is the
time at which a new set of tasks arrives in the system.

affects task scheduling strategies. For example, cloud computing offers high computing capacity but can lead
to delays due to the distance to the data source, while edge computing minimizes latency by processing tasks
locally.

With the increasing use of robotic networks in industries such as manufacturing, healthcare and disaster
management, the need for efficient, scalable and adaptable methods of task allocation and scheduling is becoming
more pressing. This is especially important given the emergence of distributed computing paradigms such as
cloud, fog and edge computing, which present new opportunities and challenges for robotic systems.

This paper makes the following contributions: (1) it provides an overview of methods for task allocation
and scheduling in robotic networks and categorizes them, focusing on the main approaches, including optimiza-
tion, combinatorics, and reinforcement learning. The review highlights how these methods take into account
different system characteristics, such as static vs. dynamic task allocation and load balancing; (2) it provides
an evaluation of the strengths and limitations of these methods, focusing in particular on their applicability to
robotic systems of different sizes and types (e.g., static, dynamic, human-robot collaboration). It also consid-
ers the importance of cloud, fog and edge computing in optimizing task scheduling; (3) critical challenges for
existing methods are identified, including scalability and adaptability in dynamic environments, and potential
avenues for future research are highlighted, e.g., the development of hybrid models that combine the strengths
of multiple approaches to improve performance in real-time and resource-constrained settings.

In this paper, we categorize the methods of task allocation and scheduling according to their underlying
mathematical approaches, such as optimization, combinatorics and reinforcement learning. This categorization
approach was chosen because task allocation methods are usually independent of the type of robot used. Instead,
the focus is on optimizing resource allocation and system efficiency, regardless of whether the robot is a drone,
a humanoid or a small robot. These mathematical methods offer generalizable frameworks that are applicable
to robotic systems with different types of robots.

By providing a comprehensive overview of the state-of-the-art task allocation and scheduling methods, this
paper aims to provide a solid theoretical foundation for researchers looking to explore more specialized areas
of robotic network optimization and bridge the gap between theoretical advances and practical, real-world
implementations.

We have reviewed high-level studies on ”scheduling” and ”allocation” from 2017 to 2024. Studies were
selected that address the problem in robotic networks or in the cloud. We tried to cover most of the methods
used in recent studies. This paper provides a comprehensive overview of methods for task allocation and
scheduling in robotic networks. It categorizes the existing solutions according to their underlying approach
(optimization, combinatorics and reinforcement learning) and provides a detailed analysis of the performance,
scalability and applicability of these methods. In addition, this survey highlights open research challenges,
especially in the integration of cloud, fog and edge computing, and suggests directions for future research.

2 Related Work

In the article [28], articles related to scheduling in cloud computing were examined. The authors examined
all articles with the word ”scheduling” in the title or keyword published from January 2005 to March 2018.

3

2017

2018
2019

2020

2021 2022
2023

2024

(a) Categorizing by year.

With cloud

Without cloud

(b) Categorizing by considering
cloud or not.

01

Several

(c) Categorizing by number of
robots.

partially load
 balancing

load balancing

Without
load balancing

(d) Categorizing by aiming to
balance the loads.

Dynamic

Static

(e) Categorizing by being static
or dynamic task assignment.

With
human−robot
collaboration

Without
human−robot
collaboration

(f) Categorizing by considering
human-robot collaboration.

Optimization

Combinatorial

Reinforcement

Alternative
approaches

(g) Categorizing by the ap-
proach used to solve the prob-
lem.

Figure 4: Different categorization of all contributions.

The article explains the importance of task scheduling, and that it cannot be done manually. The main
benefits of proper task scheduling are: (for the user) spending less money on using virtual machines, getting
the result of task execution faster, among others, and (for the cloud provider) processing a large number of
incoming requests, spending less on service maintenance, providing the best quality of service, and so forth.
They classify existing task scheduling techniques into ten categories and briefly explain each category with its
advantages and limitations. They categorize the papers according to the year of publication, the techniques and
parameters they measure, and state their limitations and highlighted time complexity. Studies on scheduling
and task allocation, both with and without cloud infrastructure, provide complementary methods for broader
applications. The paper [28] focuses mainly on works on cloud computing and works that apply scheduling
methods to robotic networks are not included. Scheduling methods are also evolving rapidly, and several new
methods have been developed in the last six years.

The authors of the article [29] examined studies on heterogeneous multiagent systems and focused mainly
on robot agents. They considered studies on task decomposition, coalition formation, task allocation, and mul-
tiagent scheduling. Most studies dealing with cloud infrastructures have not considered optimal task allocation
in the cloud. The automation of the task allocation problem is divided into three stages depending on the usage
of human agents to find an optimal task allocation. Finally, task decomposition, coalition formation, and task
allocation are considered separately. Several challenges such as using Big Data, considering task complexity,
applying machine learning, human-robot collaboration, and communication instability are identified for further
exploration. Most of these challenges have been explored in recent years and several results have been proposed.

The review article [30] examined the studies on the cloud robotic architecture developments without con-
sidering task allocation and scheduling, which is beneficial for further optimizing the performance of a cloud
robotic system.

3 Categorization

We present an overview of the works studied in the form of diagrams organized according to various distin-
guishing features, as shown in Figure 4. These diagrams provide an overview of the trends in research on
task allocation and scheduling. They help to illustrate the evolution of the field and the increasing focus on
different architectural and methodological aspects, such as the shift towards edge computing or the emergence
of combinatorial and reinforcement learning approaches.

All contributions have been considered according to the following criteria:

• Year: The year of publication of the developed model.

• Static/Dynamic: Two types of task assignment: In static allocation, tasks are assigned from a predefined

4

set, while in dynamic allocation, tasks are assigned as they arrive.

• Load balancing: Whether the scheduling model ensures that all processing units complete their tasks at
almost the same time.

• Cloud infrastructure: Whether the scheduling model is designed for a cloud-based system.

• Number of robots: The number of robots in the system.

• Parameters: The parameters used to develop the scheduling model.

• Main objectives: The main goal of the developed model.

• Approach used: The method used to solve the task allocation problem.

• Restrictions: Constraints that should be considered when applying the model to other problems.

• Problems: Limitations of the model that need to be investigated further.

• Type of experiments: Whether the model was validated by simulation or real-world tests.

We classify the papers according to their solution approach for scheduling and task allocation and then sort
them by year of publication, as shown in Figure 3. The solution approaches include:

• Optimization: Formulation of the problem as an optimization model.

• Combinatorial: Translating the problem into a graph-theoretic or set-theoretic model.

• Reinforcement learning: Solving the problem with the help of reinforcement learning techniques.

• Alternative approaches: Other models, such as language and automata theory, geometric models or novel
architectures.

While the methods of task allocation and scheduling could also be categorized by system models and the chal-
lenges they address, in this paper they are categorized by solution approaches to provide a clearer understanding
of the different mathematical frameworks and methods in this area. By organizing the papers in this way, we
highlight the different theoretical foundations such as optimization, combinatorics, and reinforcement learning
that can be applied in different system models and environments. This approach is particularly valuable for
researchers focused on developing robust, generalizable solutions that can be adapted to different real-world
challenges of robotic networks. By categorizing task allocation methods according to mathematical approaches,
we highlight how these strategies address key challenges in robotic networks, such as resource management and
real-time performance. This categorization allows us to focus on the generalizable aspects of the methods that
are independent of specific robotic types and can be adapted to different system architectures.

It is important to note that robotic network systems operate in different environments with different re-
sources, task complexity and constraints. For example, unpredictable network latencies, hardware failures or
different dependencies between tasks may occur in real systems. As a result, the applicability and validity of
certain metrics, such as energy consumption or task completion time, may differ significantly between simulation
environments and real-world deployments. Many of the metrics used in our study are tailored to specific aspects
of robotic network systems and may not offer universal applicability for all scenarios. This diversity makes it
difficult to produce intuitive outcome figures that effectively capture the benefits of the different methods in each
scenario. The detailed explanations in the text are intended to complement the summarized data and provide
insights into the strengths and limitations of each approach when applied in different real-world contexts.

With this categorization of papers, we aim to provide a comprehensive understanding of how different ap-
proaches can address the complex challenges of robotic network systems. This categorization allows researchers
to identify the most appropriate methods for their specific applications while highlighting areas where further
research is needed.

All contributions are summarized in the supplementary material based on their solution approaches.

4 Optimization

In this section we discuss contributions that solve the problem using an optimization approach and apply a stan-
dard solver to obtain the result. The works are separately analyzed based on whether the cloud infrastructure
is considered or not.

5

4.1 Without Cloud

[31] investigated the task allocation of multi-robots, taking into account the time windows constraints of the
tasks and their precedence order, and proposed an optimization approach that can be solved by several possible
methods, such as market-based, swarm-based, distributed constraint optimization methods as a decentralized
approach or branch-and-bound method as a centralized approach to minimize a cost function or maximize a
reward function for all robots for completing their tasks. The temporal model is translated into logical expres-
sions, [32], and then the logical expressions are translated into graphs that facilitate their use, [33]. Dynamic
task allocation considers changes in the environment and provides solutions through centralized approaches like
branch-and-bound and metaheuristics as well as decentralized methods such as DCOP-based techniques and
market-based approaches.

All robots in the decentralized model should be able to communicate with each other and in the centralized
model, the central unit should be able to communicate with all robots. Moreover, communication failures have
not been considered, which means that in the centralized model, the central unit has to reschedule all tasks and
generate new solutions when new tasks arrive, while in the decentralized model, approximation methods should
be used to reduce the computation time. Moreover, robots that can perform multiple tasks simultaneously and
multi-robot tasks are not considered, and disjoint temporal models are not considered.

[34] studied the ordering of tasks with time window constraints. They described a general optimization
model for the task allocation problem from which all existing methods can be derived by considering a general
optimization of a generic function, which can be a cost function, a reward, a distance to the task, etc., and
then, depending on the problem, maximize the number of tasks completed, minimize the sum of the total path
cost of all robots, minimize the latency, maximize the reward, and minimize the number of robots deployed.

The time constraints are simple and time-critical tasks cannot be correctly assigned to robots. To find
a solution, they investigated various existing proposals according to the main problem by considering the
centralized and the distributed solution methods, but there is no clear way to solve problems with multiple
objectives.

[35] investigated the optimization of task completion time, resource consumption, and communication time.
The author proposed a resource-based task allocation method to ensure the efficiency of task allocation over a
long period of time. The proposed task allocation method is a market-based approach. And it assumes that
occasional recharge and resources are consumable resources available to robots in task allocation, which includes
rescheduling of tasks.

The method does not consider the two parameters recharge time and transfer time to recharge stations,
which may change the solution. Moreover, their method is compared with the cases without task rescheduling
and without considering resources. To improve performance, additional constraints are introduced into the op-
timization problem and performance is experimentally compared to methods without considering the additional
constraints. However, the improved performance is apparent even without testing.

[36] developed a method that finds the smallest number of robots in a given time limit and assigns tasks to
them so that the robots can complete their tasks within the time-limit. The authors proposed a multi-objective
approach called Mofint (multi-objective GA with forest individual containing non-intersecting trees), which first
finds upper and lower bounds on the number of robots and then determines the optimal completion time by
finding an optimal spanning forest. The main problem they addressed is the complete coverage problem (CCP),
which is equivalent to finding an optimal spanning forest in graph theory [37, 38]. The problem is to find the
smallest path that avoids obstacles between all points in a given area. First, an area is divided into several
regions with respect to obstacles. Each region is considered as a task, and each task is assigned to a robot.
Considering the regions as vertices and adjacent regions as edges, a graph is obtained. Given a number of robots,
the solution to the coverage problem (minimum completion time) with a given number of robots is to find the
optimal spanning forest where the number of tree components equals the number of robots. Since the regions
of the area are a partition of the area and each region is assigned to a robot, there is no overlap between the
robots. The method for finding the regions is partitioning and homomorphic projection using Morse theory [39],
where the area becomes a union of different bands. Next, they find the upper and lower bounds on the number
of robots. Then, from the lower bound (LB) to the upper bound (UB), they test whether the completion time
is shorter than the time limit. For the bounds, the LB for a fixed number of regions is equal to the smallest
integer greater than or equal to the value of the sum of all weights divided by the time limit. For the UB, they
generate a random spanning tree and then use the linear tree partitioning algorithm to determine the number
of partitions. In this algorithm, the random spanning tree is partitioned into multiple parts such that the sum
of the weights of all parts is less than or equal to the time limit. The objective is then to minimize the weight of
the heaviest tree in the spanning forest. To solve the optimization problem, they randomly create a forest with
a fixed number of trees between the LB and the UB. And then add random edges to create a LB-tree forest.

The weights of the vertices of the graph of regions are considered as non-negative integers. Since we are
looking for the minimum number of robots, we should look for an appropriate partition for this number of
robots. Such a partition should be defined in such a way that it does not exceed the time limit. Moreover, the

6

definition of the band size depends on the metric, which is not defined. Next, the UB can be defined simply as
the number of vertices determined by the partitioning of the region. Moreover, the partitioning of vertices into a
fixed number of parts is not unique. Examples can be found where the region is partitioned into a fixed number
of parts such that one part meets the time limit but another part does not, see Figures 5 and 6. Therefore, the
assignment of each partition of nodes to robots does not necessarily mean that it does or does not respect the
time limit. To solve the optimization problem by adding random edges that either create a cycle or reduce the
number of trees by one, we need to check for possible cycles in the graph after adding each random edge.

Figure 5: Environment abstraction. The imaginary
vertical dashed lines are some borders of regions, v1 to
v5. The filled object in the middle of the environment
is the obstacle.

Figure 6: Task allocation. Two possible allocation to
three robots. Tasks for each robot can form a span-
ning tree. The partitioning vertices in the left will
pass the time limit, T = 2, but the right one does not
pass the time limit.

[40] proposed a distributed dynamic task assignment algorithm for swarms of robots under the assumption
of communication instability. The problem is translated into an optimization problem for maximizing the utility
of all agents. In order to solve the optimization problem, it is necessary to maintain the bundle vector (the list
of tasks assigned to the agents, where the tasks are ordered by when they were won), the path vector (the same
as the bundle vector, but the order of tasks is the order in which the tasks are completed by the respective
agents), the winning agent vector (the vector of values corresponding to the agents and tasks to determine an
agent’s expectation of which agent placed the highest bid on the task), the winning bid vector (the vector of
values corresponding to the agents and tasks to determine an agent’s expectation of placing the highest bid
among all agents on the task), and the timestamp vector (the vector of values corresponding to the agents and
tasks to determine when an agent placed the bid on the task).

In the case where all tasks have relatively long execution times with respect to the average communication
time, communication delays do not lead to significant changes in the allocation. Moreover, the optimization
problem can be simplified and transformed into linear programming by transforming the main objective loga-
rithmically. And then the main objective is to minimize the completion time of all tasks instead of solving a
more complex objective function.

[41] examined capabilities and energy consumption by minimizing the cost function. In this study, the
tasks are prioritized based on the time constraints and capabilities of the robots and the optimization problem
(Mixed Integer Quadratic Problem) is solved to find the optimal task allocation. The optimal task allocation
is achieved by updating the priorities of the tasks according to time.

The cost function must belong to class C1 (functions that are continuously differentiable), which is not
specified in the paper, otherwise the arguments are not valid. Moreover, for each robot, the task with the highest
priority is considered unique. Moreover, all the cost functions in the experimental results and examples are the
distance to a certain point in a compact Euclidean subspace is a very simple function, but other cost functions
such as a combination of energy consumption, time to complete tasks and some others can be considered which
increase the complexity of the optimization problem. In some scenarios, where the cost functions are not of
class C1, the method cannot be applied. This means that their proposed method works only for special cost
functions. For example, functions such as ∣2x2

− 1∣ or ∣ 2
π
arctan(π

2
x)∣ are not compatible with the application of

their method. Moreover, their method does not take into account environmental changes.
[42] studied the minimization of the cost function in a dynamic environment where task priorities may

change due to environmental changes. The proposed method is similar to that of [41]. The optimal allocation
is achieved by updating the states of the robots over time and the priorities are updated with the changes in
the environment.

The cost function is considered to be continuously differentiable and for each robot, the task with the
highest priority should be unique, which cannot cover more general scenarios. Moreover, it does not consider
the scenario that an environmental disturbance can reduce the cost, e.g., removing an obstacle. Also, the
frequency of environment changes must be considered, e.g., repeated placement and removal of obstacles in the
same location.

[43] proposed a method for planning the motion and communication strategies for a robotic network to
perform all tasks with the goal of minimizing energy consumption and avoiding collisions. For each task, a
robot is selected, which is called the leader. The leader plans the movements to a particular location and
when the task is completed for the newly arrived task based on the current formation, a new leader is selected.

7

Figure 7: Three robots, where two of them (red and
blue dots) have identical distance to all the spots zh,v.
The line is a obstacle free path.

Figure 8: An example of the obstacle-free path from
the OC to the task, with 4 robots shown in color cir-
cles. The line is a obstacle free path.

Each robot solves a convex optimization problem to plan a collision-avoiding optimal trajectory and an optimal
communication strategy that guarantees network connectivity in the presence of uncertain communication.
If we consider an agent (node) called an operations center (OC), it is an interconnected node that enables
communication among all nodes. When a task is assigned to the team, a particular robot is selected as the
leader. The leader will visit the task location within a certain time, and the other robots will support the leader
by passing their information to the OC. To select the leader and configure the other robots, the robots search
for the shortest obstacle-free path between OC and the task location after a task at that location is announced
by OC. The shortest path is defined by a sequence of straight lines between the two positions in the flat surface
of the area, where the line has no intersection with obstacles. This path is divided into several (number of
robots) segments of equal length. Now the shortest (obstacle-free) path from the current position of each robot
to each spot of the segments is found. This information is transmitted to all the robots, and then the robot is
assigned to each spot in such a way that the total length of the path that the robots have to travel to reach
that spot is minimal. In this way, we can minimize the movements of the robots to design the path from OC
to the position of the task.

Dynamic obstacles were not considered. In addition, the method for finding the shortest path should consider
the case where there are two robots, both of which have identical minimum distances to the spots, and one is
randomly selected. Moreover, the optimal assignment of robots to each segment cannot be found simply by
finding the shortest path to each segment, see Figure 7. There are several examples where a robot should be
assigned to a spot even though other robots are closer to that spot, see Figure 8. In addition, to find the optimal
assignment of robots to spots, we need to solve the problem of minimizing the total paths traveled by all robots
to each segment spot. The constraint on the threshold radius around the robots is not considered, which means
that the size of the shortest distance between OC and the task for a given number of robots cannot be smaller
than twice the sum of the radii around all robots; otherwise, we should use a smaller number of robots.

[44] studied the allocation and routing of robots to move objects between stations in such a way that
the makespan (the time from start to finish) is minimal. The problem is translated into a problem called
precedence constrained multi-agent task assignment and path-finding (PC-TAPF), which is an optimization
problem to minimize the makespan. A hierarchical algorithm is proposed to find the optimal makespan. The
proposed method jointly considers task dependencies, performs task scheduling, and provides routing that avoids
collisions. The main idea is to first solve the problem without considering collisions. Then, the task assignment
is passed to the so-called conflict-based search (CBS), which searches for the collision-free set of paths. Traveling
Salesman method is used for the first part, and the tree search for the second part. A 2D environment with
multiple stations is considered, i.e., places where operations are performed on objects that are regularly placed
at fixed positions. The stations contain pick-up and drop-off areas, i.e., places where objects are collected or
dropped off before and after performing operations. There are also several robots that move objects from one
station to another, with the position of each robot being known at any given time. The stations are the area
where the robots cannot move. The position of each object at any point in time is known. It is assumed that
a robot can pick up an object if the object and the robot have the same position at the same time. To avoid
conflicts, the method looks for possible conflicts in the solution. If there is a conflict, the same is applied for
the second time, but in this case, since the number of conflicts is already known, the nodes where there is a
conflict are searched and their route is replaced by a conflict-free route. The proposed method consists of a four
level algorithm. The sequential next- best assignment search (NBS) tries to find a valid operating schedule for
a sequential assignment problem, the conflict-based search (CBS) uses a binary tree search to find an optimal
path, incremental slack prioritized search (ISPS) obtains the operating schedule and set of constraints from
CBS, slack and collision aware tie-breaking A∗ (A∗SC) searches the graph to find the states corresponding to the
critical path with the lowest cost.

Saying that the object and the robot have the same position at the same time is not enough as a condition
for an object to move. There should be a condition that specifies which of the robots that do not carry objects
should move towards an object to carry it. For example, the concept of total distance between robots and objects
can be introduced, which should be minimized for optimal scheduling of objects for the robots. Analogous to the
existence of the final station (terminal), there should also be an initial station that has no inputs but produces
several outputs (raw materials) that are used as inputs by other stations. Otherwise, these raw materials would
have to be placed randomly in space. Moreover, since the proposed method does not impose any constraints
on conflict avoidance, we cannot ensure that we will find a conflict-free route the second time. For example,

8

there could be a node whose state in the route is conflict-free, but its state causes conflicts at other nodes,
see Figure 9. This means that conflict avoidance should be added to the proposed algorithm in the first place.
ISPS shows faster runtimes, in contrast to the expected results of CBS and NBS dependencies. The obtained
runtime measurement is valid only if the algorithms are computed independently. However, this contradicts the
proposed method which states that the algorithms must be executed with respect to each other. Since the goal
is to minimize the makespan, there should be a result that gives the average makespan of each experiment.

Figure 9: Nine robots are planned to move. Eight planned initially with the movement without conflict, but
for the middle robot there is always conflict with other robots. The arrows show the direction of movement of
the robot at each position.

[45] described an optimization problem for assigning tasks to robots in a sequence of tasks and motions
of robots such that there are no collisions between robots, the predefined set of constraints is satisfied, and
overall makespan is minimized. In their method, tasks are divided into confined tasks (a task where a robot’s
action is limited to a small part of the workspace, e.g., grasping and placing) and extended tasks (a task where
a robot’s action is limited to a large part of the workspace, e.g., welding along a line). The main focus is
on the optimization of the extended tasks. For a given set of tasks that satisfy the set of constraints during
execution, each task has multiple starting positions (called degrees of freedom), and the time interval in which
a robot can perform each task is measured. The workspace is partitioned to identify regions that a robot
occupies during the execution of a task in a sequence of time frames by discretizing the time interval of the
task into smaller successive intervals. For solving tasks and motion planning for extended tasks, the problem is
translated into a constraint satisfaction problem, which is a type of optimization problem modeled with triples
(X,D,C), where X is a set of variables, D is a set of domains where parameters take values, and C is a set of
constraints. The solution is to assign values from D to the variables X such that the set of all constraints C is
satisfied. To solve the problem, the gradient method and steepest descent by Cauchy [46] is used (backtracking
search method), that is, start with an upper bound on the minimum makespan and add the constraint that
the minimum makespan is less than the upper bound. Then, remove the values from the domains that do not
satisfy the new constraint, and then decrease the value of the upper bound until the optimal solution is reached
for the values of the variables. The optimization model is viewed from three perspectives: task layer, robot
layer, and collision-free plan.

The time intervals considered in the paper depend only on the task and the dependence on the robots is not
considered, i.e., the robots should be identical. Moreover, the size of the region and the discretization of the time
interval are not fixed and can be either a short or a long interval. Depending on the choice of the interval size
and the size of the domain, different solutions can be obtained. Moreover, in the backtracking search method,
in order to obtain a solution for the first upper bound, a random selection seems to be made in the solution
space, so that the values in the domains that satisfy the constraints are selected. But the steps to reduce the
upper bounds are not described. And the solution completely depends on the selection and reduction of the
upper bounds. Moreover, different upper bounds may lead to different solutions. Also, the robot dependency is
skipped but should be considered since the navigation codes, time intervals, constraints, and active components
are robot-dependent, and their values may change when switching from one robot to another. In [45], tasks
are translated into ordered visit constraints originally defined in [47]. Here, the tasks are considered confined,
so the start and end locations are considered identical, and the robot configuration is the same at the start
and end. However, the new modified version includes different locations and different configurations to include
extended tasks. Moreover, collisions may occur between components of a single robot, which is not considered.
In addition, collision avoidance depends on the size of the regions (voxelization sizes). When the region size is
large, the robots can have intersections in the configuration spaces, but when the region size is smaller, they
have empty intersections, see Figure 10 for a 2D example. This is consistent with the well-known result that
there are always infinitely many other real numbers between two distinct real numbers, see [48]. This means
that if the two robots are not connected at any point, there will always be a voxel size where the intersection
of their voxalizations is empty.

[17] proposed a method to decide whether to assign subtasks to edge devices or offload them to fog nodes,
such that the total execution time of all subtasks and the total energy consumption of all edge devices are

9

Figure 10: Two robots space occupancy. With larger pixel size they have collision but with smaller pixels they
do not have collision. The workspace is the large square. Pixel sizes are chosen as proportion of the total size
with the factors 2−n for n = 2,3,4. The grey rectangles are pixels considered with robot collisions.

minimal. In this method, the tasks that need to be executed by edge devices are translated into a DAG generated
by the dependencies of the subtasks. Considering the average execution time and energy consumption of all
subtasks on each core of the system architecture, the problem is then transformed into an optimization problem
whose solution allows optimal scheduling of the subtasks.

In this model, all edge devices must have a direct communication link with a fog node, all fog nodes have
direct communication with each other at the same communication speed, and the initial and final subtasks
of each task requested by edge devices should be executed on edge devices. Moreover, it is assumed that the
transmission bandwidths between all edge devices and all fog nodes are identical. The proposed method does
not minimize the energy consumption, but only considers a threshold for the total energy consumption of all
devices. All subtasks should either be offloaded to fog nodes or executed on the same edge device that initiates
the request. This makes it impossible to use neighboring edge devices to execute subtasks. The speed of data
transmission and energy consumption for executing subtasks are assumed to be linear over time.

[49] examined the allocation of tasks when humans and robots work together, taking into account the
change in human performance over time, and proposed a method for minimizing the normalized makespan
while maximizing process quality and minimizing the agents’ workload. In the proposed method, the problem
is transformed into mixed-integer linear programming (MILP). After the solution is found, the parameters are
recursively updated after the completion of each task and checked for possible re-allocation.

In scenarios that require multiple re-allocations, the optimization problem must be solved each time a task is
completed. This is a time-consuming process, apart from the time required to update all parameters when the
number of tasks assigned to an agent is large. Moreover, one of the criteria for re-allocation of tasks is to change
the threshold for the change in cost from the original task allocation, although the threshold is not specified
and there are no criteria for how to generate such a threshold. Their model assumes that at most two agents
can perform a single task and only one human can supervise the execution of a task. There are scenarios where
more than two robots need to execute a task and multiple human agents need to supervise the execution of a
task. For these scenarios, the proposed method does not provide a solution. Moreover, the proposed method
assumes that the finish time of a task is finite, which is not suitable for some tasks. Finally, some tasks are
co-dependent and should be started and finished at the same time, but the formulation does not consider such
tasks.

[21] solved the problem of distributing objects from their initial positions to their destination using mul-
tiple robots within a time window. The robots are assumed to have a limited capacity to transport objects,
and the objective is to minimize the total travel time of all robots to transport all objects. The problem is
then transformed into a combinatorial optimization problem where the total travel time of all robots is to be
minimized. An auction-based distributed algorithm was used to solve the problem, which first finds a feasible
solution when information about all objects and robots is available. Tasks are then assigned to robots based on
the ratio between the expected cost of the task and the cost of the last feasible solution at each time step.

It is assumed that the number of robots is very large to ensure the existence of a feasible solution. It is
also assumed that the robots have the same capacity, and that robot failures, recharge times, and the energy
required by a robot to complete a given task are not considered. In practice, however, the number of robots is
limited, and it is difficult to find a feasible solution with a limited number of robots.

[50] studied task scheduling for a robotic network of single-task robots performing multi-robot tasks. They
proposed a particle swarm optimization method for multi-objective task scheduling in which the task completion
time, robot cost, makespan, and workload balance are minimized. To find a suitable solution, they use local
particle updates in each step based on the strength of the target to find a neighboring region with best solutions.

The local search strategy may result in finding local optimal solutions. Moreover, the correlation between
the targets is not considered since minimizing the makespan and load balancing are equivalent. Moreover, with
a very large number of robots and tasks, the search for a solution is very time consuming. It is also assumed

10

that the robots have a stable performance. They have tested the performance of their method with simulations.
[51] investigated the task allocation of a multi-station multi-robot welding system, minimizing the completion

time of welding a single workpiece at a single station, the time difference between the completion times of
adjacent stations, and the path length of robots moving to the station. They designed a multi-objective
optimization problem that was solved with an evolutionary algorithm that sorts the stations and robots based
on the expected completion time and the paths to the stations. Their goal is to assign tasks to the stations and
then instruct the robots to move between the stations to complete the tasks.

They have formulated each goal individually, but the main goal of optimizing all objectives simultaneously
has not been considered. In addition, the dependencies between the goals were not taken into account in the
formulation. For example, if the distance a robot travels to a station is long, the time to weld the workpiece the
robot is tasked with will also be long. In addition, the formulations only contain the times for the completion of
the individual workpieces. However, after the completion of each workpiece, the station needs a certain amount
of time to remove the completed task so that it is ready for the next task. Also, possible collisions between the
robots and the need to redirect them while moving between stations are not accounted for in the formulation,
which can affect the performance of the system. They tested the performance of their proposed method using
simulations and in the real-world environment.

[52] investigated the task allocation and path planning of multi-UAVs using a genetic algorithm modified
with crossover and mutation operators to meet the resource requirements of tasks with simultaneous target
arrival. They also proposed an unlocking strategy to prevent the UAVs from remaining in an infinite waiting
state. It is assumed that the UAVs fly at a fixed altitude and have a constant speed. Their goal is to find a task
allocation strategy that regulates the relationship between targets and UAVs while finding a suitable path for
the UAVs to their targets, since the repeated change of the UAVs’ motion angle increases the computational
complexity of the problem. They derived a combinatorial optimization problem that simultaneously minimizes
the total flight distance of all UAVs and the maximum flight distance of any UAV. They took into account
the limited resources carried by the UAVs, the resource requirements of the targets, the constraints on the
energy capacity of the UAVs, the maximum number of UAVs that can be at a target simultaneously, and the
possibility that multiple UAVs remain in the waiting condition to be assigned to some targets. In the latter case,
the expected resources for each target are determined, sorted in descending order, and the UAVs are assigned
to the targets with the highest order first.

To avoid the UAVs being in an infinite waiting state, it may happen that a task cannot be completed before
switching to another task. For example, if tasks have deadlines and for a given number of UAVs, the total
resources carried by all UAVs are less than the resources required to complete the task in some of the targets
in the ordered target list, then the task will be incomplete in the next step, but the task will be ranked lower
and its deadline may be exceeded before it is completed. They have tested the performance of their proposed
method with simulations.

4.2 With Cloud

[53] proposed a hierarchical auction-based mechanism to find the shortest communication time by removing
unnecessary repetitive computation and reducing the communication cost in a robotic network cloud system. In
the proposed method, network nodes are prioritized to allocate resources and maximize the overall transmission
by managing the nodes’ requests.

The latency and memory usage by the robots are not considered and the architecture topology is considered
fixed. Moreover, there is no fair comparison with state-of-the-art methods. All robots need to communicate
with the cloud to perform their assigned tasks. The execution time of the tasks and the scenario of execution
of simple tasks by robots that do not require communication with the cloud are not considered.

[54] proposed mixed-integer nonlinear programming to minimize the latency considering the dependencies
of the algorithms in a robotic network cloud system.

The memory required in the robots to execute the algorithms is not considered and the communication
time is also not fully considered. For example, a robot may be able to execute two independent algorithms
individually, but may not have enough memory to execute them in parallel. Furthermore, since all algorithms
are requested by robots, the start time should be calculated from the time a robot sends a request to execute
an algorithm until it receives the result of that algorithm. In this way, the start and end point of time initiation
is the robot and in case of multiple robots, all robots should be the start and end points.

[55] examined the urgent response to sudden demands on the cloud. The author proposed a method to find
the minimum number of virtual machines and physical machines, and the minimum distance between virtual
machines and physical machines, to ensure resource allocation optimization and timeliness. The cloud data
center includes multiple physical machines with different number of CPUs, memory capacities, and disk spaces.
Each physical machine runs multiple virtual machines with different number of CPUs, memory capacities, and
disk spaces. The process of resource allocation is to place the virtual machines on the physical machines.
When an urgent resource request arrives, the proposed method reorders the virtual machine queue based on the

11

priorities, determines the resource capacities of the physical machines hosting the request, and solves the multi-
objective model that finds the mapping of the virtual machines to the physical machines that accommodate
the request. The priority of resource allocation is the normalized priority of users and urgent degrees of users’
resource requests. The virtual machine allocation priority is defined as the weighted average of the normalized
user priorities and the normalized urgent degrees of the users’ resource demands. To define the multi-objective
model, so-called distances (performance vectors) are formed between virtual machines and the physical machines
hosting the request (physical host). The matching distance between a virtual machine and a physical machine
is defined as the natural distance between the two normalized vectors. The main objective is the sum of all
matching distances when mapping virtual machines to physical machines. This means that for a physical
machine with known free factors (number of CPUs, disk space, and memory capacities) we need to assign the
task to the virtual machine with the largest factor that is closest to the free factors of the physical machine.
The next goal is to assign all requested virtual machines to a minimum number of physical machines. Then a
genetic algorithm is used to solve the problem.

The multi-objective model described in [55] can be transformed into an associative commutative matching
problem, which has been shown to be NP-complete, as demonstrated in [56]. Moreover, the degree of load
imbalance is compared only after the requested virtual machines are assigned to the physical machines, and the
virtual machines are assumed to be running under full load. This shows that the best-fit method (a kind of
greedy algorithm that selects a physical machine with the most free CPUs to allocate the new virtual machine)
is better than their proposed method with the least degree of imbalance.

[57] studied load balancing, minimizing energy consumption, maximizing resource utilization, and maxi-
mizing security in a cloud data center. The authors proposed a multi-objective optimization approach. To find
a solution, they randomly select solutions from the solution space and use the Pareto front for non-dominated
solutions to move towards an optimal solution.

The nature of security is a side-channel attack, different tasks require different energy consumption, and
the cost of data transmission is not considered. Moreover, the number of requested tasks and their energy
consumption do not play any role in the optimization and the solution depends on the initial allocation.

[58] models the total delay for task offloading and constructs an optimal task allocation based on it to
minimize the total delay. In this paper, the data arrival model is called a Markov-modulated on-off process,
switched discrete-time Markov-modulated Bernoulli process [59], where the success probability changes with
respect to a Markov chain. The data delivery to the Fog node is considered independent and identically
distributed (i.i.d.), and the data offloading to the edge node or cloud center is a two-hop connection, roadside
units (RSUs) are used for offloading the data to the cloud and edge nodes. If the computation tasks cannot
be completed in the required delay time, the tasks are offloaded to other nodes (nearby Fog nodes, the Edge
node, or the Cloud node). Assuming that the channel gain follows the exponential distribution with parameter
1, compute the outage and transmission probabilities and then define the outgoing process using the min-plus
algebra, which allows combining the two hops for offloading the data to the cloud node or the edge node with a
single parameter. Then formulate the delay process and find the steady-state distribution for each hop. Finally,
define data arrival and service (super) martingales. The optimization problems that depend on where the tasks
are offloaded are extracted and solutions are provided.

The problem is defined only for discrete time periods. And the data is split into multiple partitions and
transmitted to other nodes for processing. When the partial data is received by the node, the node starts
processing. The authors have not provided any explanation for cases where the input data needs to be collected
from other nodes to start processing partial data, or when nodes have the condition that there is a minimum data
size for processing partial data, and the optimal partitioning of data does not satisfy this condition. Moreover,
the departure process is originally described as an infimum-plus algebra, which should really be called min-plus
because it is not well defined otherwise. The defined threshold is locally defined and should be extended to a
global threshold for all incoming data if it is greater than any value of the service. For a task only one source
node is considered, and for multiple source nodes, we have to use Medium Access Control (MAC) protocol
which is not an easy task because for a single source node the data shift is considered independent of the source
due to the formulation but for multiple source nodes it depends on the source due to MAC protocol, bandwidth
usage is shared and two source nodes can be adjacent and are in the set of fog nodes of each other. The delay
from the RSU to the edge node is assumed to be constant. However, when a vehicle moves, the data may be
transmitted to the edge node through different RSUs. Therefore, the distance from the RSU to the edge node
may change, so the propagation delay may not be constant. The wording suggests that the RSUs are always
closer to the Edge than to the cloud, which does not include the case where a vehicle moves close to the cloud
server, so the opposite is true.

[60] developed a method for simultaneously minimizing resource utilization, time, and cost and performing
load balancing. The authors describe a multi-objective optimization, formulate all the objectives and use the
hybrid angle strategy [61] to find the optimal solution. And for load balancing, the objective of overloading was
carried out.

The method hybrid angle strategy combines ant colony, genetic algorithm and local search method to find an

12

optimal solution, but it needs much computation time. Moreover, the method can only be applied to discrete
optimization problems. If we apply the method to a continuous and non-convex problem by discretization,
depending on the discretization, the solution is either weak or it is extremely time consuming to find a solution
due to the large population size.

[62] proposed a scheduling method in which the fog layer handles all the tasks by distributing and balancing
the loads among all the fog nodes and reducing the delay. The authors translate the problem into an optimization
problem that minimizes the service delivery delay (the time interval between when the fog receives a request
and when the IoT node that sent the request receives a response).

Consider a system that contains three layers: IoT, fog, and cloud layers to provide IoT services. Each fog
node has information about its neighboring nodes, and the new task first reaches a fog node that is closest to
the IoT. In this case, if the task is received by a fog node that has better specifications (meaning that minimum
requirements to be able to perform the task) compared to all its neighbors, the task is assigned to it. PSO
(particle swarm optimization) is used to find the suboptimal solution of the optimization problem. In this case,
a schedule solution with expected delays is predicted and each time a new solution with a lower delay is found,
it is updated. If the difference of average delays in two consecutive steps does not change more than a certain
threshold, the optimization process is stopped. However, suppose that there is a fog node that has better
specifications than the original fog node (the node that receives the request for the task), but this node is not
the neighbor of the original node. In this case, the task is assigned to the initial fog node, but there is a fog node
where assigning the task to it can actually improve the performance. So, the proposed method can find the
optimal assignment solution only when all the fog nodes are adjacent to each other. Moreover, in most existing
methods, the tasks are distributed to the nodes that have the required resources and reliable communication.
For task orders, two orders are considered, namely, one task should be completed before another task starts,
and two tasks should start simultaneously; other orders such as tasks to be completed simultaneously, tasks to
be executed simultaneously, etc. are not considered. Moreover, the simulation is performed for a request rate
(number of requests sent by the IoT per second) between 0.01 and 0.05, which is a very low number; in a busy
network, the values are higher. Moreover, the communication between the cloud and the fog nodes is very high,
which leads to extreme delays compared to the AFP method, where the cloud is used as the central unit for
scheduling tasks on the fog nodes.

[63] investigated dynamic task scheduling in robotic network cloud systems. This study considers whether
a task can be performed by a single robot or a group of robots, or whether it should be moved to the cloud,
depending on the characteristics of the task. Their goal is to optimize the quality of service by optimizing the
latency, energy consumption and cost considering the specifications of the architecture and the tasks. They
developed a mixed-integer optimization problem and solve it using a heuristic method.

The developed model does not take into account the interdependencies between latency, energy consumption
and costs. Moreover, it is necessary to determine in advance which task should be performed by a single robot or
a group of robots or moved to the cloud. The performance of the proposed method was tested using simulations.

[64] proposed a technique for splitting and partitioning tasks to improve the dynamic scheduling of tasks
on multiprocessor systems (e.g. robotic network cloud systems). Then they proposed the technique of load
balancing and limited workload redistribution to increase the acceptance of future workloads. Their goal is to
schedule more tasks and complete them faster, taking into account the time windows of the tasks and minimizing
the latency of the tasks. For task splitting and partitioning, they used the algorithm proposed in [65]. They
translated the problem into an optimization problem and then obtained a solution by simplifying the problem,
setting a lower bound on the latencies of the tasks and solving the dual problem. For load balancing, they either
heuristically find a suitable processor for the task or split it into several serial subtasks and consider them as a
stream of tasks.

The communication time is not considered and it is assumed that the processors have a constant performance
and that there are no delays in the execution of the tasks, which increases the latency. Also, splitting the tasks
into smaller subtasks leads to additional delays in starting the successive subtasks. In some cases, the delay is
caused by the execution of a subtask by another processor. This processor must communicate with the processor
responsible for executing the previous subtask and also with the processor responsible for executing the next
subtask. The performance of the proposed method was tested using simulations.

[22] developed a task assignment algorithm for robotic network cloud systems that achieves optimal perfor-
mance for a given task set by simultaneously minimizing the memory usage by all robots and the completion
time of all tasks by the robots. The problem is transformed into a multivariate optimization problem and the
solution can be obtained using a branch-and-bound algorithm.

The method can only be applied to systems where the complete information about the algorithms, such as
the size of the processing, input, and output memory and the space complexity of the algorithms, as well as the
average execution time of the algorithms on each processing unit and the average communication time between
the processing units, is given. The cases when a robot does not work properly or the architecture of the robotic
network cloud system is dynamically changed are not considered in the study.

[66] developed a task scheduling mechanism for cloud-edge computing for production lines that minimizes

13

service latency and energy consumption. They translate the problem into a multi-objective optimization problem
and solve it using PSO and gravitational search algorithm (GSA), which helps to consider the neighbors of the
previous solutions in the last step. In their formulation, they assumed that the tasks are independent, but in
the real world, most tasks are interdependent, which means that a task can only be performed if all other tasks
on which it depends have been completed first. They tested their method with simulations.

All contributions that formulate the problem as an optimization problem are summarized in Tables 1 and 2.
Optimization methods are effective in minimizing resource usage in well-defined environments, but often struggle
with computational complexity in dynamic settings. Therefore, hybrid approaches that combine optimization
with real-time heuristics or machine learning can help reduce complexity and adapt to changing conditions.

5 Combinatorial

In this section we discuss contributions that solve the problem using a combinatorial approach. The works are
separately analyzed based on whether the cloud infrastructure is considered or not.

5.1 Without Cloud

[67] proposed an extension of the Hungarian method, [68], by considering a distributed version of the method
that allows a team of robots to cooperatively compute the optimal solution to a linear objective function without
requiring a coordinator or shared memory.

There is no fair comparison with the state-of-the-art methods and in case there are two suitable matches
between robots and tasks with the same cost, the proposed method does not explain which is the decision
criterion to find the most suitable match. Moreover, the solution is obtained by successively finding a match
between robots and tasks. However, depending on the match, the convergence may be very slow, and a load
balancing procedure is required to avoid the case where a single robot is assigned multiple tasks, but some
robots have no tasks. In a more realistic scenario, not all robots are capable of performing all tasks, and the
method requires categorizing robots by tasks they can perform.

[69] studied a rescue mission that maximizes the number of rescued, minimizes the average waiting time, and
minimizes the total path cost. In this method, tasks are clustered and robots select tasks from their preferred
clusters after task assignment is completed. A proportional selection strategy is used to avoid local optimum.
The market-based approach is used to find an optimal assignment and it allows adding or removing robots as
well as removing, modifying and adding tasks, which allows rescheduling of tasks.

Clustering and proportional selection depend on the initial metric used, and different metrics may lead
to different results. For example, if the metrics used for clustering and/or proportional selection are small
or the number of robots is large, all robots spend most of their time validating their optimal scheduling and
communicating with each other, which may result in some of the tasks being removed due to their deadlines,
since robots only have information about their own scheduled tasks.

[70] studied a method for task scheduling for heterogeneous computing. The authors proposed Lookahead
to prioritizing tasks and selecting processors based on a prediction cost matrix with an algorithm called PPTS.

The comparison is made only with PEFT, [71], which uses the optimistic cost table to obtain the priority of
each task and assigns each task to a processor, and HEFT, [72], which sorts tasks in decreasing order of priority
and assigns the highest priority to the processor with the smallest earliest completion time. The method is not
compared with IPEFT, [73], the improved version of PEFT, which uses the pessimistic cost table to obtain the
priority of each task and uses the critical node cost table to assign each task to a processor, which provides
a better comparison with state-of-the-art methods. Moreover, the metrics used to compare different methods
are not suitable to compare them. The metrics defined over each method measure different properties, and
the PPTS method has additional properties to measure (computation time successor of a task) than the other
methods. So to compare them, we should restrict the metrics to the common properties that all metrics measure
and then compare them. Otherwise, the comparison is not valid. General terms for comparing different metrics
can be found in [74].

[75] studied minimizing the maximum travel times of collaborating robots, i.e., minimizing the completion
time of the longest task. The authors translated the optimization problem into a matching problem with
minimum edge weight sums.

They use matching instead of perfect matching, which exponentially increases the solution space. Determin-
istic task scheduling is used, and the method fails to schedule the model with uncertainties such as robot failures,
delays, and other uncertainties. Moreover, transfer robots that are not assigned to any task are considered Idle
since the problem is deterministic. If these robots move to the centroid of all remaining tasks instead of being
Idle, the completion time of all subtasks may be faster. Otherwise, it might appear that only certain robots are
used to transfer tasks because of their proximity.

14

[18] has studied the scheduling of tasks with duplication. Task duplication means scheduling a copy of a
task on different processors. An advantage of task duplication is that it can improve performance due to the
reduction in communication cost. The authors have proposed a task scheduling method with communication
delay where tasks are in a precedence relationship, communication cost is incurred between processors, and the
task can be scheduled on multiple processors. Their goal is to minimize the overall completion time. The tasks
are translated into a DAG, and the graph of the architecture is extracted. First, the tasks are partitioned, and
the tasks in each partition are assigned to a single processor (using branch-and-bound search to find an optimal
solution). A duplicable task is defined as a task with an out-degree of at least 2, or a task that has a descendant
with an out-degree of at least 2. It is then shown that duplicating the set of all duplicable tasks can reduce the
completion time. Duplicable tasks are duplicated on the processors to which their ascending tasks are assigned
to see whether or not this improves completion time.

If the DAG of tasks is complex and most tasks have an out-degree of at least 2, the computation becomes
exponential, and all duplicable tasks should be tested by trial and error to determine which tasks should be
duplicated. Furthermore, the set of duplicable tasks only provides the set of tasks whose duplication can improve
the completion time, but it does not specify exactly which tasks should be duplicated. Moreover, in the case
of non-duplicable tasks, the problem becomes a static allocation, where the complexity of finding an optimal
solution increases exponentially for a large number of tasks.

[76] proposed a method to find the target tasks of all robots in such a way that the maximum mission time
is minimized and the scheduling constraints for human operators are met. A method called task assignment,
sequencing, and scheduling is developed for a team of human operators and robots, where the robots travel to
the tasks and work on the tasks together with the human operators. The goal corresponds to the generalized
traveling salesman problem, which is to find a sequence of tasks for each robot and schedule them for the human
operators such that each task is visited exactly once by some robots. Each task can be performed jointly by
only one robot and one human operator, and each human operator can work on at most one task, and each task
can be scheduled for at most one human operator. The mission time of a robot is calculated as the sum of the
travel time, the waiting time, and the processing time of the target tasks of that robot. The waiting time comes
into play when the number of human operators is less than the number of robots and some robots have to wait
until a human operator is available. A α approximation solution is proposed as the initial solution, where the
α ratio is a constant factor such that the cost of the approximated solution is at most α times the optimal cost.
Then other methods like Branch and Cut are used to obtain a better result. The proposed algorithm consists
of three steps: changing the travel cost of a robot between two tasks by adding half of the processing times of
the two tasks, assigning the goal order for each robot according to the algorithms in [77], first applying Crane’s
algorithm to find the 1-tour (a matching algorithm to find the edges with the minimum travel time, then another
algorithm to expand to a cycle, again another algorithm in that cycle to replace some paths with the shortest
ones if there are any, and then another algorithm to split the 1-tour into disjoint k-tours), and then apply the
k-splittour algorithm to split it into k-disjoint tours for all robots, and a greedy heuristic implementation to
create feasible schedules for the robots to go to their respective task sequence in the same order and either wait
until a human operator is free or process the task with an assigned human operator.

The authors did not consider minimizing Idle times (the time an operator is without scheduled tasks). Also,
the ratio α is considered as a constant in the interval 2 ≤ α < 3.5, which is a relatively large value. In this case,
if a human operator is available for more than two waiting robots, the human operator is randomly assigned
to one of the robots, since we have no control over the waiting time of each robot and a robot may wait much
longer before moving to the next task due to the random selection, see Figures 11 and 12. Moreover, the number
of conditions that need to be tested grows exponentially. And we only need some constraints on the edges of the
graph to reduce the computation time. Therefore, the computation time of the proposed method is exponential
in general, which can be found polynomially only for some limited cases, but not in general. Moreover, since the
travel time is the time from the current position of the robot to the next task, they must mention that the travel
time from one task to the next is determined by the order of the tasks; otherwise, we can consider the time
that the robot returns to its initial position before moving to the next task, and thus the travel time increases.
Instead of randomly assigning available human operators to the waiting robots, it is possible to obtain a better
result by assigning the available human operators to the waiting robots with the maximum cumulative waiting
time.

[78] has studied a fair redundant assignment of agents to tasks that improves task performance. The
proposed method consists of translating tasks and agents into a bipartite graph whose edges are weighted by
the cost of each task assigned to an agent. The redundant assignment problem is about which task should be
assigned an additional resource. The problem is transformed into an optimization problem, and an attempt is
made to solve it. The solution is near-optimal in the sense that some of the constraints of the optimization
problem are relaxed to find solutions faster. It is assumed that there are multiple robots, that each robot can
do all tasks, and that multiple robots can be assigned to the same task. A redundant assignment is fair if it
optimizes the worst-case task cost (i.e., the expected worst-case task cost). Consequently, fairness becomes a
minimax or maximin problem. Since minimax problems are combinatorial and finding an optimal solution is

15

Figure 11: Example of tours (3-cycles) of three robots with identical processing and travel times. d is the initial
point of all robots.

Figure 12: Assigning operators to the waiting robots in random, as proposed in [76], against assigning to a
waitng robot with maximum cumulative waiting.

infeasible for most redundant assignment problems, supermodularity properties are used to find a near-optimal
solution that can be solved with a greedy algorithm. This means that adding an element (robot) to a solution
set (superset) increases the cost. Since supermodularity corresponds to an increasing (decreasing) negative
(positive) function on its domain, which is positive or negative depending on the definition of the cost function,
we can use the bisection algorithm to find the solution. The threshold assignment algorithm, [79], is used to
obtain the solution. The edges are assigned values of 1 and 0, respectively, if the edge is considered as an
assignment or not. The method of identifying the values of edges uses a threshold function. This threshold
function is a criterion for the selection of edges. It can be the cost of the shortest path, the cost of edges, etc.

The optimization problem requires a constraint on the assumption that tasks should be assigned to at least
one agent. And it is not specified which thresholds are used and which criterion terminates the application of
the recursive thresholding algorithm. Moreover, the randomly generated bipartite graph is not sufficient for
the simulation used. It must be noted that all task nodes have a degree of at least 1; otherwise, the generated
graph cannot be a suitable graph since some tasks cannot be assigned to any agent. In the proposed algorithm,
an assignment is initialized and the feasible solutions replace the initial solution every time instead of being
added to the initial solution. The next simulation uses the normal distribution, which is not validated. To find
a near-optimal solution, the bounds of the relaxing parameter and the main objective must be independent.
Independence should not be a necessary condition to obtain a solution. However, it is beneficial because
generating the relaxing parameter independent of the main objective unifies the constraints of the optimization
problem, and all constraints can be treated independently. This means that the change in the subspace generated
by each constraint is independent of the subspaces generated by all other constraints. This makes finding the
solution easier, see Figure 13.

Figure 13: Intuition for solving a linear optimization problem with constraints independent of the main objective
and with two constraints dependent on the main objective. On the left-hand side, the constraints move linearly
toward the optimal solution. On the right-hand side, the constraints move jointly toward an initial solution
depending on the initial solution; this movement is not necessarily linear.

16

[80] proposed a mathematical model for joint offloading of multiple tasks that takes into account the
dependencies between subtasks and schedules network flows to minimize task completion time. Network flow
dependencies are the problem in offloading tasks to multiple devices, leading to competition for bandwidth
usage. In the proposed model, the problem is translated into an optimization problem and a solution called
Joint Dependent Task Offloading and Flow Scheduling Heuristic (JDOFH) is proposed. The method considers
the DAG of tasks and the start time of network flows. When a new task arrives in the system, the task is
offloaded by multi-hop communication with other units based on their resource availability to find the best
node (processing unit) that can perform the task optimally. Thus, the underutilized resources can be found to
distribute the tasks in a better way. However, this leads to an additional problem due to bandwidth constraints
that affect the performance of the network. The task offloading problem with task dependencies that minimizes
the total completion time of all tasks is studied, i.e., the problem of offloading tasks together (tasks consist of
multiple dependent subtasks) and scheduling network flows to transfer data between dependent subtasks. For
a given task, decide on which device to execute each subtask of the task and find (schedule) the start time of
the subtasks. The architecture and set of tasks are translated into a simple graph with communication links
and a DAG with dependency links between subtasks. The main idea is to use the set of execution flows and
decide the scheduling of each subtask based on the order of execution flows. Subtasks in the same co-subtask
stage are prioritized. Their priorities are recursively defined by the ranking metric for tasks in each co-subtask
stage. The method is compared with

• Local Execution (LE): tasks are executed on the device that generates the task;

• Remote Execution (RE): tasks are considered as a single unit and executed on the device with the lowest
task completion time;

• Separate Task Offloading and Network Flow Scheduling (SOFS): subtasks are offloaded to devices using
the algorithm HEFT, where in the algorithm HEFT subtasks are sorted in descending order of priority,
and the highest priority is assigned to the processor with the smallest earliest completion time, [72]. Then
the network flow is prioritized by the earliest deadline first;

• Joint Scheduling Based at Task Release Time (ALT): it is similar to JDOFH and optimizes task offloading
and network flow scheduling together. The only difference is that subtasks at the same level have no rank
(order), so subtasks at the same level have no priority to figure out which one should be assigned first.

It is assumed that no two flows are allowed to pass through a link at the same time. However, under this
assumption, the full capacity of the bandwidth cannot be used. For example, if two tasks need to be transmit-
ted from one device to another, which together are smaller than the bandwidth capacity, their simultaneous
transmission has more advantages than their separate transmission. Moreover, various notions such as the rank
of subtasks of a task, the cosubtask, the total data load on a device, and the average processing speed of all
devices are not defined. The priorities of subtasks are defined based on the maximum processing speed, but not
all subtasks can be scheduled on the processor with the highest speed, which means that the defined metric is
not well-defined. Even if we take the average, the order is not well-defined because scheduling subtasks on the
processor with the lowest or the highest speed requires a different order due to the different completion times
of the subtasks. Moreover, in the experiments for LE, without testing, the best performance is shown when the
arrival rate of tasks on all devices is identical and all devices are the same, or for the scenario where the devices
are different but the arrival rate of tasks for all devices is the same and proportional to the processing speeds
of the devices, because in these cases we do not need to consider the communication time. Moreover, task
completion in RE may take more time compared to JDOFH because tasks are considered as single units and are
completely assigned to one device instead of assigning subtasks to multiple devices. Also, because SOFS uses
the HEFT algorithm first, communication is not fully considered and network flow is not minimized because
the devices selected to perform subtasks may take more time to communicate because they are farther away
from the device that generates the task. This means that without testing, we can say that the SOFS method
has poor performance when the number of tasks increases. Moreover, ALT is similar to JDOFH with fewer
constraints. Therefore, the completion time of tasks that apply ALT is always greater than or equal to the
completion time of tasks that apply JDOFH.

[81] proposed a method to minimize the cost of allocating tasks to a human-robot team by translating the
problem into a behavioral tree, dividing the tasks into a series of parallel tasks. Given a set of tasks that an
agent can perform, the MILP problems are solved recursively to minimize the cost.

In the proposed method, it is necessary to know the actual cost of performing the tasks by humans. And
the solution space grows exponentially with the number of agents and the number of parallel tasks. Moreover,
multiple human agents cannot perform the same task, and if a human agent have to perform the same task
multiple times, the performance of human agents needs to be monitored, which is not considered. Moreover,
there are no clear constraints to distinguish between human and robot agents. And there are no comparisons
with the existing methods.

17

[23] study the competitive behavior of multi-robot coordination using the k-winer-take-all (kWTA) algorithm
and analyze the behavior of the k largest competitors. They investigated the convergence of the kWTA algorithm
with adaptive gain activation function in a dynamic task competition scenario of multi-robot systems with
communication including uncertainties and disturbances. Their model describes a distributed kWTA with time
delay. The problem is then translated into an optimization problem to minimize the competition rate (difference
between the square of the outputs and the success rate of the inputs). As time progresses, the maximum delay,
the winners, and the outputs are updated via communication links. All winning robots continue to operate,
but all losing robots are shut down immediately. Instead of actual or expected time delay, an upper bound was
used where convergence of kWTA is achieved when the delay is less than the upper bound.

Such delays may depend on communication instabilities and robot malfunctions where the time delay may
exceed the upper bound. For multi-task robot systems, the competitive scenario applies only to a single task.
For multi-task robot systems with multiple tasks, there should be a parameter (tie-breaker) that prevents the
scenario of at least two robots winning the same task. For a system with a finite number of robots, there should
be a dynamic for the value of k such that the number of robots is less than or equal to the initial k at which
all robots are winners, otherwise moving the winning robots toward one task may decrease the winning rate for
other tasks, which in turn may increase the energy consumption of the robots and the total distance traveled.
However, if k strictly decreases with time, the number of winning robots that can complete the task decreases,
see Figure 14.

Figure 14: An example where all robots are winners for two tasks with k robots. The k winning robots move
towards the first task, and if one of the robots is moved towards the first task, the winning rate for the second
task decreases, and vice versa. Even if several identical robots have the same distance to a task, there should
be a tie-breaker to determine the winning robot.

[82] investigated static task allocation for robotic network cloud systems, which minimizes the total pro-
cessing time of all tasks by duplicating tasks. They proposed a combinatorial graph-theoretic approach based
on the precedence order of tasks that recursively determines which tasks should be duplicated and to which
node of the architecture the duplicated task should be assigned. Their goal is to minimize the time in which
the system performs all tasks such that it is faster than if there are no duplicates. Then they proposed the
optimization, [22], to be solved for all nodes of the architecture using the branch-and-bound algorithm to deter-
mine the solution to the task duplication problem faster. They used simulations to find out how the proposed
method works.

Although the time complexity of the proposed method is polynomial, it is still very time consuming as the
number of nodes and the number of tasks increase. This means that time is needed to determine the optimal
task allocation with duplication before deploying the architecture, and this time is much larger compared to
solving the task allocation without duplication. In addition, the memory usage of the robots was not considered,
since duplicating tasks for the robots increases their memory usage, which increases their cost and at the same
time may decrease the performance of the robots.

5.2 With Cloud

[83] proposed a method to reduce the makespan and maximize the resource utilization using a directed acyclic
graph and predicting the completion time of a task. They first generate the graph of all tasks, then randomly
pair tasks with processors based on the earliest start time of the tasks and determine the execution time of the
tasks. Based on the generated execution time, they then determine the makespan of the entire graph and then
select the best pairs that minimize the makespan.

As the number of tasks increases, the complexity of the algorithm increases exponentially. And the prece-
dence order defined by the graph of tasks is ignored in the algorithm.

[84] proposed a method to balance the waiting time for scheduling clusters, a model to find the dependency
correlation measure to find the similarities between tasks by their data dependencies. A clustering method is
used to clusters tasks to reduce the number of tasks and the waiting time for scheduling. Then the next task
can be started only after the previous tasks are completed. Load imbalance occurs when two parallel jobs at

18

Figure 15: An example of DAG with (t1, t2), (t2, t3), and (t1, t3) have maximum dependency correlation.

Figure 16: An example of DAG with (t1, t2) and (t2, t3) have maximum dependency correlation.

the same level are not completed at the same time. A dependency imbalance occurs when a late task needs the
results of two tasks in a different order. Then, the late task must wait until both jobs are completed before it
can be started. The clustering graph is defined as an extension of DAG by replacing the nodes with two sets of
nodes containing tasks and a virtual node describing the delay time for extracting tasks in each job. Parallel
tasks or sequential tasks based on dependencies in the extended graph are clustered as a single job. Then, all
virtual nodes in a cluster are replaced with a single node representing the clustering delay, which is the difference
between the execution of the job and the actual execution of all tasks in the job. Each cluster is then assigned
to a single processor. Runtime imbalance and dependency imbalance are measured and minimized to find an
optimal clustering method. It is concluded that the process execution time is least when the number of clusters
is equal to the number of processors. In the proposed method, the number of clusters is known in advance and
finding the maximum dependency correlations is the most important part of the algorithm.

For the cases where the execution times of the tasks are assumed to be identical, see Figures 15 and 16, the
method does not determine which two tasks should be considered for the first cluster. It also concludes that
the number of clusters is independent of the graph, which does not seem to be correct. This is because if we
consider, for example, 30 tasks in a sequence and say 5 processors, then the only cluster with the minimum
execution time is chosen (the communication time between processors is omitted in this case). In this case,
the optimal performance can be obtained by considering a single processor to avoid the delay caused by the
communication between processors. It cannot be said with certainty that 5 clusters are the optimal number
of clusters. Suppose that there are k sets of tasks, where each set consists of serial tasks and the tasks in the
different sets are parallel. Let us further assume that k1 > k are identical processors and the total execution time
of each task of any set on each processor is constant, then according to the conclusion, k1 clusters are required,
which means that by the pigeonhole principle some tasks from different sets should be assigned to different
clusters, which means extra communication time. However, if we consider k clusters, the extra delays due to
communication of data are eliminated, so we have a shorter execution time. This contradicts their conclusion.

[85] proposed a priority-based (PB) scheduling method to maximize the parallelism of ready tasks that
need to be scheduled for a distributed computing system by considering the precedence order of tasks. It gives
priority to nodes based on execution time and their interdependencies. Define the priorities of nodes based on
four terms Direct Quotient (DQ) (it is the number of tasks ready after the current node is completed and the
nodes with the highest DQ should be executed first), Level Quotient (LQ) (it is the maximum length from this
node to a sink node, and the node with the highest level should be executed first for a given set of ready tasks),
Export Quotient (EQ) and Import Quotient (IQ) (they are defined recursively). IQ is only used to calculate EQ
and EQ is used to determine the importance of executing a task for unlocking other tasks. Then the priority of
the two tasks can be determined by first comparing their DQ and LQ. And if they are equal or give opposite
results, their EQ is used as tie-breaker. If all the values EQ, DQ, and LQ are equal for both the tasks, the
winner is selected randomly. Every time a task is scheduled, the set of ready tasks changes, so we need to
update the values of DQ, LQ, and EQ.

There can be multiple sink and source tasks. And since we need to update the values of DQ, LQ, and EQ
every time a task is scheduled, determining the priorities of tasks can be a time-consuming process. Moreover,
both source and sink tasks are used in the formulation, but the source tasks should be placed at the 0 level, and
all of them can be considered as sink nodes. Moreover, the exponential increase in the runtime of the method

19

compared to Internet Computing Optimal (ICO), [86] and Area Oriented (AO), [87] shows that it is better not
to use PB when there is a possibility that a complete bipartite subgraph of a DAG exists (which is the case
when the number of nodes of a DAG is very high). Moreover, the proposed method has an advantage over other
methods only for DAGs with a very small number of nodes. For a large number of nodes, it is better to use other
methods because of the runtime of the proposed method. Moreover, comparing the average makespan reduction
without describing the makespan of the method does not tell us anything about the goodness of the method.
The method can only improve the makespan because the resulting makespan can be very high compared to
the optimal task assignment. So the average makespan reduction will be very high, but at the same time the
generated makespan can still be very large.

[88] explored algorithms assignment to the robot, the fog, and the cloud that simultaneously minimize the
maximum memory required by the robot and the total time required to execute all algorithms. In the proposed
method, the set of all tasks is decomposed into the set of all algorithms and translated into a DAG. The algebra
of memory and time is defined based on the precedence order of algorithms to describe the average execution
time and memory consumption of the robot. Then, the branch-and-bound algorithm is applied to find the
optimal allocation.

To apply the method, complete information about the algorithms is required, such as the size of the pro-
cessing, input, and output memory and the space complexity of the algorithms, as well as the average execution
time of the algorithms on each processing unit and the average communication time between the processing
units. Moreover, the method cannot be applied to a system with multiple robots.

[19] proposed a method to find the optimal task allocation in the cloud that minimizes the completion time
with load balancing of processors. The authors, recursively categorize the tasks and then use the clustering
scheduling method that minimizes the worse scheduling length. Then recursively return to the original DAG
by assigning each node to an appropriate processor to maximize the gain. For clustering, the critical path is
used, and the nodes in the critical path are added to clusters considering the scheduling length.

The optimal performance of their approach with minimal scheduling time is when the original DAG can
be split into multiple disjoint classes (only once) of DAGs with at most a single edge connecting each class to
another. And there is no argument that categorizing tasks reduces scheduling time compared to scheduling the
entire DAG. Moreover, one of the main goals of categorizing tasks into different classes is to minimize scheduling
time. However, in scenarios where all tasks are executed in parallel or serially, the scheduling time is higher than
the usual scheduling methods because more time is required for clustering and categorizing tasks. In addition,
the method should be tested and compared with at least one other scheduling method.

[20] proposed a method to find the optimal task allocation that minimizes the task completion time consid-
ering the price of using the cloud infrastructure. In the proposed method, tasks are distributed among multiple
resources considering the budget constraint. To minimize the completion time, some of the tasks are duplicated
to resources that are in the Idle state in the same time window so that the completion time of their immediate
successors is reduced.

Duplication of tasks is done regardless of how much duplication of a task can improve performance. Also,
the budget must be large enough to apply the algorithm. Moreover, in [20], the sub-budget has a different
scale than the budget. To obtain the total weights, the terms with different scales must be added, which is not
allowed.

[15] studied minimizing the makespan and maximizing the resource utilization in the cloud, where tasks
are assigned to virtual machines based on their arrival time, and the loads on virtual machines are migrated to
another available virtual machine when the deadlines of tasks are violated.

If the deadline of all tasks is very long, all tasks can be assigned to a single virtual machine. The proposed
method provides optimal performance for load balancing when the length of tasks is similar and the deadlines
are short. The method performs poorly compared to greedy algorithms when the number of tasks is large.

[16] explores offloading computational tasks to the cloud or to the fog of a collaborative robot architecture
when performing machine learning tasks given the constraints of robots. The study investigates offloading
tasks considering reliability, security, and privacy with a method called CoRoL, which uses split learning that
enables offloading without revealing the data and reduces the amount of offloaded data by splitting it. Tasks
are considered machine learning tasks (ML), and when a task is assigned to a node in the architecture, a portion
of the dataset is moved to that node to be trained with the learning model and expected accuracy. If a node
achieves the expected accuracy after training, the task is assigned to that node. The problem is then translated
into an MILP, and depending on CPU load, energy consumption, and available memory, the node to which a
task should be assigned is selected.

The tasks are considered as ML tasks only, but in case of some other tasks that should be offloaded to other
nodes to minimize energy consumption, the splitting method does not work. Another issue is that the method
does not recognize when a task should be better offloaded to other nodes.

All contributions that solve the problem using a combinatorial approach are summarized in Tables 5 and 6.
Combinatorial methods are very efficient for solving certain types of problems, but often have scalability issues
when applied to larger, more complex systems. One possible solution is to combine combinatorial techniques

20

with metaheuristic approaches such as genetic algorithms or simulated annealing, which can help to explore
larger solution spaces more efficiently.

6 Reinforcement Learning

In this section we discuss contributions that solve the problem using a reinforcement learning approach. The
works are separately analyzed based on whether the cloud infrastructure is considered or not.

6.1 Without Cloud

[24] addressed the problem of unknown resource demand of a task before the arrival of the task and the fact
that the resource demand may not be compatible with the scheduled resource, which is called multi-resource
fairness. The authors proposed an online task scheduling tool, called FairTS, that learns to shorten the average
task slowdown while maintaining multi-resource fairness. The average task slowdown is the average of the time
differences between the arrival of the task and the completion of the task proportional to its length (the length
of a task is the execution time of the task when it is assigned to its requested resource). The average slowdown
of tasks allows us to handle tasks with high computational demands. At each time step, new tasks arrive to be
executed by the fog and resources are allocated to each task. In the fog, there are several types of resources with
different capacities. For each task, the arrival time, the start time, the finish time, the bandwidth demand for
uploading, and the computation demand with a certain number of resources required for each resource type are
known. The bandwidth capacity limit between the end-users and the fog is also known. Dwell time is defined
as the time between the arrival of a task and its completion, which is divided into different types of delays,
waiting delay (the time between the arrival of a task and its start time), transmission delay (the time required
to transmit the task to the fog system), and execution delay (the time required when the task is split into
multiple subtasks and assigned to multiple resources). Assume that a fixed set of tasks arrives in the system.
The first objective is to minimize the task slowdown, and the second objective is to minimize the variance over
the dominant shares of the tasks for the set of all maximum shares of each resource in all tasks. The problem is
converted into an optimization problem, and then Deep Reinforcement Learning is used to solve the problem.
The policy gradient method (PG) is used and the current state is given as input and the action probability
vector as output. At each time point, the agent observes the final state of the environment and applies an
action to it. This changes the state of the environment to the next state. This action generates some rewards
which are collected by the agent. Based on the collected rewards, the agent then uses a policy to decide how
to maximize the expected cumulative rewards in the long run. The fog is the environment, the availability of
resources and the resource demand of tasks at a given time are states, and the resource allocation is an action.

However, the simultaneous minimization of the two objectives is the goal of all load balancing methods,
but no corresponding load balancing studies have been conducted. It has been shown that the performance
of the proposed method is within the performances of random and greedy (the method SET [89], which is a
method that assigns tasks to resources with the shortest execution time). The reward formula ignores the arrival
time and the finish time of a task. However, the finish time can only be determined after resources have been
allocated to the task. The task arrival time should be taken into account because the tasks that arrive earlier
should be executed earlier. In the experimental simulation, it is assumed that β = 0 (a constant parameter that
weights the importance of shortening the task slowdown and resource fairness), which contradicts the initial
assumption that β > 0. Considering the Poisson distribution with the parameter equal to 0.8, this means that
the probability of getting at least 6 tasks is about 0.0002, and with 5 CPUs on the fog, we are more likely to
have a smaller number of tasks than the number of CPUs. This avoids the more general problem of assigning
more than two tasks to the same CPU.

[90] developed a task scheduling method for edge-enabled collaborative robotic networks to maximize the
number of completed tasks. They proposed a decentralized multi-agent method using deep reinforcement
learning with a partially observable Markov decision policy to determine the assignment of users to groups of
collaborative robots and edge devices considering the deadline for the tasks, and then assign the communication
and computational resources of the edge devices to the robots to offload the computational tasks. In this model,
the edge device is used for scheduling tasks and forwarding them to the robots. In the proposed method, the
reward function for each agent has been defined based on the global performance of the overall system. They
consider the interdependence between the assigned tasks and assign them to the same group of collaborative
robots.

If some of the tasks in the stream are interdependent (e.g. if tasks are to be completed at the same time),
then all these tasks should be assigned to the same group of robots, but since they are parallel, they may be
distributed between two groups of robots. In the worst case, this also means that all tasks should be assigned to
a single group of robots. Furthermore, the communication delay is not fully considered as the communication
between the users and the edge devices as well as between the edge devices and the robots is not included in

21

the formulation. Also, the method requires additional optimization for the optimal distribution of tasks among
the edge devices to avoid additional communication between the edge devices. They tested the performance of
the proposed method using simulations.

6.2 With Cloud

[91] proposed a method for adaptive resource allocation. It collects knowledge from the environment, incor-
porates adaptive policies for dealing with environmental changes, and makes a series of decisions. The method
aims to minimize service time by considering routing and computation delays as service time and maintaining
a balance in terms of computational power and resources. The authors consider the graph of the architecture.
When a request is made for an application, it is transmitted to the node that hosts the application. The service
time is measured as the sum of the routing delay of the request and the data processing delay. Processing delay
and routing delay are formulated. The variance of network load and variance of computing load are minimized
to balance the loads. The main objective is to minimize the average of the sum of processing delay and routing
delay from one node to another for all node pairs. Then, the collected information is fed into a Deep-Q network,
which is somewhat similar to Bayesian statistics (finding the best prior that maximizes the total reward) that
adjusts the model after each new observation. At each time step, the agent observes the environment (state).
Based on a certain policy, it performs an action and receives the reward for that action. The action moves the
state to the next state and so on. At each time step, the policy is updated based on the reward, and the goal
is to maximize the total reward. This is similar to Bayesian statistics: observing the new data at each time
step is the state, the action is the description of the distribution model, the policy is the prior, then the prior
is replaced by the posterior, which can be viewed as updating the policy. The rewards can be considered as the
negative mean square errors of the data from the model. For the total rewards, the weighted cumulation of the
rewards is considered, the action-value function is defined as the expectation of the cumulative reward when
an action is performed in a state according to the policy, where the policy is a translation of the outcome of
states by performing actions into a probability distribution, actions are updated by the action-value function
at a certain learning rate.

It is assumed that only a single node hosts an application, so in case of malfunction of this node, the whole
system is not able to execute the applications hosted by this node. Moreover, in the formulation of routing
delay, a fixed value for routing capacity is considered and all paths between two nodes are considered. By
finding and using the shortest paths, the routing delay is minimized and the routing capacity does not imply
the available capacity for data transmission between nodes.

[92] proposed a scheduling method to minimize the makespan and response time and increase resource
efficiency. The scheduling method is based on reinforcement learning. At each time step, the size of the
occupied buffer and the total length of virtual machine tasks are considered independent to use Bayes’ theorem,
and the Q-values are estimated.

The Q-value function described is not mathematically well-defined, the sum of rewards must converge in
the long run, otherwise the Q-value function cannot be a function. Moreover, it leads to a reduction of the
state-space dimension, which is just a rescaling of the components. If the number of iterations is smaller than
the smallest buffer capacity, the Q-value can be poorly estimated.

[25] has proposed a method to find an optimal solution for distributing tasks to servers that minimizes
the cost to the user. In the proposed method, the task allocation problem is translated into a reinforcement
learning problem where the reward function is the negative average user cost. To reduce the solution space, the
tasks are divided into a single server and coalitions. Each task of a single server type is assigned to a single
server, while the tasks of coalition types are proportionally distributed among the servers in the coalition to
which they are assigned.

The solution space is infinite, even with the coalitional reinforcement learning method. Moreover, the main
algorithm presented does not check the constraints of tasks and available resources. Some tasks can be executed
by some servers, but not all, which introduces additional difficulties in task classification. Also, the experimental
results are compared with a result that is not focused on minimizing the user cost.

[93] proposed algorithms based on deep Q-networks and dueling deep Q-networks for scheduling decentral-
ized cloud robotic systems. Their goal is to find an optimized task scheduling that considers the parameters
of lifetime, specifications, quality level, reliability, and performance of robots before task assignment and the
parameters of total price and total completion time of robots after task assignment. In this way, they maximize
the overall quality of the service and minimize the overall performance of the service. They compared their
model with random assignment, task assignment to the robots with the earliest start time, and task assignment
using round robin scheduling, where resources are evenly distributed among jobs, see [94].

They tested their proposed model with simulated data with tasks from uniform distributions with the same
number of tasks and robots. However, the statistical significance of the proposed method was not investigated
as there are several more realistic scenarios, e.g., systems where most tasks are long and short tasks are rare,
or for the scenario where most tasks are short and long tasks are rare. Furthermore, the index used for task

22

assignment is a linear regression, where the mean of the values of all components is used to find the solution,
removing the existing correlations between components, e.g. the relationship between larger computational
resources and faster computation. This means that by better identifying the parameter space, we can better
extract the component values and thus perform better scheduling. In addition, the ability of robots to perform
tasks is also important, as not all robots are able to perform all tasks.

[95] investigated task scheduling in cloud manufacturing, i.e., when a user sends a request to the cloud,
manufacturing services are provided in the cloud based on the user’s needs. This requires the optimization of
resource usage and load balancing. They proposed a deep reinforcement learning approach for task scheduling
that takes into account the dynamics of the environment, such as when service providers are offline or factory
resources are down, as well as the interdependence between scheduled tasks and the trade-off between resource
utilization and load balancing. They have introduced a strategy called Maximum Posteriori, which considers
the scheduling solution with the task assignment with the highest probability in the posterior resulting from the
Markov decision process. The main goal is to minimize the total time and cost of resource usage and balance
the loads. They have conducted experiments with simulations and collected data from the real world.

The given policy can solve the scheduling problem, but if the posterior distribution is randomly shifted to
the left or right, the solution will not be optimized. Moreover, balancing the loads is equivalent to minimizing
the makespan (minimizing the total time consumed), so the two objectives are completely interdependent on
each other.

[96] investigated task scheduling for time-critical tasks in robotic network cloud systems considering en-
ergy consumption and total completion time. They proposed a Deep Reinforcement Learning approach with
Proximal Policy Optimization that considers traffic volume and adapts to environmental changes to minimize
completion time with task prioritization, minimize energy consumption based on distance, and maximize re-
source utilization. To minimize energy consumption, they focused primarily on data transmission via a selective
communication path between devices. This path involves communication between devices with the highest
bandwidth and the least interference during data transmission.

Changes in the environment can lead to a loss of communication or a greater delay in two consecutive time
frames, as the devices are in motion and this can increase the distances to each other or to the edge devices.
This means that the optimal communication path for data transmission is selected in one time frame, while the
communication path may be completely different in the next time frame. This can lead to additional delays if
large amounts of data need to be transferred. The method was tested in practice with the help of simulations
and experiments.

All contributions that solve the problem using a reinforcement learning approach are summarized in Table
7. Reinforcement learning methods are becoming increasingly popular due to their ability to adapt to changes
in real time. However, as they rely on large data sets, their applicability may be limited in environments with a
lack of sufficient data. One possible solution is the integration of transfer learning or model-based reinforcement
learning, which can reduce data requirements by using pre-trained models or simulating environments.

7 Alternative approaches

In this section we discuss contributions that solve the problem using any other approaches such as Bayes theory,
automata theory, geometrical approach, and developing a new architecture. The works are separately analyzed
based on whether the cloud infrastructure is considered or not.

7.1 Without Cloud

[97] proposed a centralized dynamic task allocation of a robotic network based on modeling the problem as a
non-deterministic finite automaton, where the task is decomposed into several subtasks and assigned to different
robots by minimizing the cost depending on the energy level of the robots.

There is no comparison with the state-of-the-art methods. The proposed method does not consider the
communication time between devices and does not take advantage of the cloud infrastructure to further reduce
the cost.

[98] investigates task assignment with the goal of minimizing the makespan and/or energy consumption
by considering latency and spatial proximity to tasks. The authors propose a method for assigning tasks to a
collaborative human-robot system where all temporal and spatial proximity constraints are satisfied and the
makespan is minimized. First, the algorithm obtains the information about the agents and their capabilities,
the set of all subtasks and their precedence order, and at least one of the parameters cutoff and timeout (the
cutoff is a given upper bound on the makespan and the timeout is the duration of searching for a solution).
Then, the algorithm (similar to the branch-and-bound algorithm) searches for the first task assignment method
where the makespan is less than the cutoff value or the runtime is greater than the timeout value.

23

Figure 17: Two different prefix with different costs (left). Two different prefix with the same costs (right). ηi
and τj are pseudowords (infinite words) corresponding to paths.

The algorithm recursively performs agent assignment and task sequencer, where the former determines which
agent performs which task, and the latter provides a task assignment method for a collaborative human-robot
system that satisfies all temporal and spatial proximity constraints, but without minimizing the makespan.
However, the completion of the algorithm does not guarantee the optimality of the obtained solution and
depends on the initial cutoff and timeout values. Moreover, there is no specific method for selecting the initial
cutoff and timeout values.

[99] proposed a method to minimize energy consumption by combining multiple allocation methods: Task
classification, processor allocation, queue ordering, task migration, DVFS, and task stealing. The optimal
allocation with minimum energy consumption is achieved by classifying tasks as short and long with the average
execution time of all tasks by allocating short tasks to slow processors and long tasks to fast processors. In
each stream, the shortest task is executed first. It then balances the load by moving the longest remaining task
to a fast processor, and reducing the frequency if the task can complete before its deadline. It also allows task
stealing.

To balance the method of assigning tasks to processors, the information about the arrival of tasks must be
known in advance. The order of tasks is not considered and tasks can be executed independently. Moreover,
load balancing and task stealing contradict each other. And task stealing may result in dropping a task that
could be completed before its deadline. Their method does not work when the time windows of tasks are
connected.

[100] investigates the minimization of path planning costs in a robotic network. The authors assume that
the workspace is divided into several disjoint regions of interest. Then, the dynamics of each robot is translated
into a weighted transition system and then extended to all robots as a component-wise direct product, where the
path that each robot can take is an infinite path of states with transition relations. Finite paths can be extracted
from the infinite path, since the sequence of the infinite path (infinite words) has finitely many states and there
should be an idempotent subword that can be obtained by the canonical form of the infinite word, [101,102], so
the optimal path planning can be extracted. It is a fast method to find the path planning of robots when the
number of robots is very large.

In some scenarios, it is difficult to find the canonical form of the infinite word. Moreover, to generate a
canonical form for an infinite word, random samples of states are used, and depending on the sample, there
may be different prefixes with the same cost, see Figures 17, and the method does not describe how to choose
a suitable prefix when the costs are the same.

[103] proposed a method for scheduling tasks that minimizes the nominal execution time, time span, and
waiting time, and maximizes the job quality metric while taking into account task priority constraints. Task
scheduling (dynamic scheduling) is performed by real-time monitoring of human activities. The proposed
method consists of two layers: In the first layer, optimal task schedules are generated for both the human and
the robot: Tasks are scheduled based on minimizing the three parameters (nominal execution time, time span
and waiting time) and maximizing the job quality metric considering the priority constraints for the tasks. In
the second shift, based on the first shift schedule and human monitoring of the actual task execution time,
rescheduling is performed to further minimize the time span and waiting time. The first layer is called the task
assignment layer, and the second layer is called the dynamic scheduling layer. The human monitoring block is
used to track the actual execution time of the assigned tasks for the human. This information is used to adjust
scheduling according to human behavior for optimal scheduling. The communication interface block is used to
identify the cases where the robot is unable to perform a task and a human decides to perform the task instead
of the robot. It is assumed that all tasks should be performed by the collaboration of a single human and a
single robot. The goal is to perform multiple jobs, and each job consists of multiple tasks. To assign each task to
either the human or the robot, a job quality metric is first estimated based on the last observation of the human
operator’s state and then updated by monitoring the human operator. Then, the tasks with the most recent
metric are sent to the dynamic planner to schedule the next task of the robot and the human operator. The
human and the robot then communicate with the planner to find out whether the tasks need to be rescheduled
or not.

The evaluation of the metric is unnecessary as it is updated immediately after the evaluation. Moreover,
monitoring by the human operator is only checked when a new task arrives in the system. However, monitoring

24

should also be done when tasks are rescheduled, otherwise, the metric remains the same and tasks are assigned
to the same agent with the same metric. Time pressure, physical risk, and job autonomy are also important
factors in job quality. The last two are conceptual terms that should be converted into a numerical metric. The
proposed formulas for job quality are defined as the weighted sum of the cost and average cost to the human
agent over the duration of performing a task. Now, if we assume that task reallocation is beneficial if it reduces
human labor time, then it is most beneficial if all tasks can be done entirely by robots. But at the same time,
it means the unemployment of the human employee. Moreover, the salary also depends on the working time,
so the working time must be increased. All these mean that the cost of the human agent must be a U -shaped
function, which is not described in this paper. Moreover, the dynamic planner is completely determined by the
human agent. It is assumed that the human agent can correctly select the tasks to be done, which is not always
the case. And the monitoring function is used to test whether the human or the robot can complete all the
tasks assigned to them. This result is then communicated to transfer some of the tasks from the human to the
robot and vice versa. Since the levels and schedule define two orders of tasks and both orders of tasks should
be maintained, moving tasks to higher levels cannot be easily considered.

[14] investigated the distribution of tasks for human-robot collaboration and describes a method for gener-
ating a value representing a human who should or should not trust a robot to perform a task. In the proposed
model, task requirements and agent capabilities are translated into values between zero and one. The trust
function is defined as a success probability of completing the task and a belief probability, which plays the
role of updating the trust. The trust becomes a sigmoidal function, and the belief is considered as a uniform
distribution.

The natural trust has no proper and simple formulation and needs to be discretized to find its value.
Moreover, the probability of success is not a probability function, but a fitted sigmoidal function with two
additional parameters, where two parameters are positive. Also, the number of parameters in the proposed
method is large, and the penalization of parameters shows that other state-of-the-art methods have better
performance because they have fewer parameters.

[13] is an extension of the work [103] by proposing a method that overcomes some of the limitations of [103].
The authors investigated task allocation when a single human and a single robot collaborate to perform a set
of jobs. A method was developed to minimize the idle time of each agent and the completion time of the jobs,
taking into account the task execution time of the currently executing job, the precedence order of the tasks,
and the compatibility of the tasks performed by the agents. When a job arrives in the system, it is considered
as a directed acyclic graph whose nodes represent the set of tasks required to complete the job and whose edges
represent the precedence order of tasks. At the same time, for each task, the weights of the quality metric are
determined as a metric to describe the agent that is better suited to perform each task. This results in the
priority of the tasks that should be assigned to the agents. Then, the agents are monitored in real time to
detect performance delays and possible rescheduling of some tasks while the agents are executing the tasks. To
reduce the completion time of a job, the total idle times of both agents are reduced by prioritizing the tasks that
release more tasks upon completion. The method performs all necessary steps and evaluations automatically,
without the need for a human agent to help with scheduling or rescheduling.

It does not consider tasks with time-window constraints, which is an important factor when prioritizing
tasks. In addition, the method cannot be applied to cases with multiple humans and robots.

[104] investigated secure task allocation for intelligent transportation systems. Users and machines send
their requests without revealing their sensitive information, and task allocation is then performed using an
encrypted matchmaking strategy. A user sends the linear integer secrets instead of requesting a specific task.
The matching strategy is then determined using AND/OR operators. They translate the matching strategy into
a bilinear homomorphic image of their direct product of p-groups, where p is a large prime number. Then they
compare whether the generated elements in the image have the same order as the elements of the pre-image to
determine whether the task and the users match.

Since the pre-image groups are cyclic groups with the order of the prime number p, all non-trivial elements
have the order p. Decoding the information can therefore be done simply by selecting two dissimilar elements,
at least one of which is non-trivial, so that the entire p-group can be generated by replacing the feeds. They
tested the performance of their method using simulations.

7.2 With Cloud

[105] investigated the optimization of task scheduling performance in clouds and used two stages for task
assignment. First, tasks are classified using the Bayes classifier, which classifies tasks based on historical
scheduling data. Then, a match is found between the tasks and the most appropriate virtual machine, and the
tasks are scheduled into the Idle time slot of the selected virtual machine.

The proposed method is inherently greedy and does not consider switching tasks between virtual machines,
which affects the performance. Experimental results are obtained by comparing the method with min-min
and max-min methods. It is easy to see that the comparisons are redundant, as these two methods are not

25

optimal for a large number of tasks. This means that all results involving some kind of optimization have better
performance than min-min and max-min.

[106] proposed a method for minimizing energy consumption for data transmission in a cloud center, where
the data transmission is done through multiple volunteer devices instead of the Internet.

The volunteer devices have limited amount of energy. The overall energy consumption for data transmission
is minimized, but the cost of energy consumption is distributed among the volunteer devices. Moreover, load
balancing is required to avoid using only some of the volunteer devices for data transmission.

[107] proposed an architecture consisting of robots, fog, cloud, and dew, where dew nodes are intermediate
nodes between fog and robots, based on the concept of microservices provided by end-user devices. In this,
local processing devices near the robot are used to store data or for computation to minimize the computation
time and storage space of robots by adding a new layer (dew) to the architecture, where dew nodes are smart
things such as mobile devices and laptops near the robot with different capabilities.

The authors did not describe the constraints and criteria for assigning a task to each node of any layer as
the number of layers increases. The complexity of the model increases as minimizing the energy consumption
limited to the end-user devices becomes more complex.

[26] studied task dependencies, average execution time, communication time, communication instability,
compatibility, and robot, fog, and cloud capability, where each parameter is measured for all processing units
and translated into a hypervolume to be maximized. The set of all tasks is decomposed into the set of all
algorithms and translated into a DAG. Compatibility, communication, and capabilities of the robots, the fog,
and the cloud are considered as parameters and the tasks are translated into numerical values with respect to
each robot and based on a parameter. Thus, a subspace of a hyperspace is created for the parameter. Then, the
robots are translated into a subspace of a hyperspace with respect to each task based on the parameter. The
intersection of the constructed hyperspaces for each robot and task creates a hypervolume to be maximized.
The hypervolume with the maximum size results in the optimal assignment of tasks to robots, optimizing the
performance with respect to the parameter.

Defining the numerical values that relate robots and tasks for a given parameter is not a simple task.
Moreover, some tasks, such as the energy consumption of robots to perform tasks, are continuous, which makes
it difficult to find a suitable continuous function. Therefore, it needs to be discretized, which may reduce the
accuracy.

[108] proposed an architecture for collaborative cloud-edge systems (cyber-physical machine tools, CPMT)
with task offloading process to balance the loads, minimize the delay and maximize the throughput. The
proposed architecture consists of three layers: the physical layer, the cyber layer and the application layer. The
physical layer contains all physical components. The cyber layer is a virtualization of the physical layer that
helps to predict, evaluate and optimize the performance of the system based on data operations. The application
layer includes all services provided to users. During system deployment operations, data is collected, such as data
transmission, individual device performance, completion time and so on, for further analysis. This information
is used in the cyber layer, which uses it to determine the optimal architecture for task completion through a
combination of a deep neural network, expert experience and domain knowledge. In the search for the optimal
architecture, the strategies of fastest response and load balancing were considered separately.

Since the communication delay is random, device failures may occur, and this information cannot be collected
and used in the model during the deployment phase, so the model may fail in the long run. Therefore, the model
must continuously collect information and update its status in time and when performing tasks to better handle
unexpected scenarios that may occur in the long run. In addition, load balancing and delay minimization are
considered separately. To test their method, they conducted real-world experiments.

[109] considers a robotic network cloud system in which edge devices utilize green energy, and their goal is to
find an optimal task scheduling that mainly utilizes the supplied green energy while maintaining the operating
state of the device without depleting the battery that stores the generated green energy, taking into account
the prediction of green energy. In this way, the required energy can be maintained over the next few days. The
model collects information such as the battery volume, the daily energy required to keep the device running,
the prediction of the energy that will be collected in the future, the energy consumption when sending and
receiving data, the computing frequency of the device, the number of tasks, the number of instructions for the
tasks, their deadline, their execution time and so on. Then they used a weather forecast model to predict the
battery’s energy level for the next day. Then they transformed the problem into an optimization problem and
proposed a genetic algorithm to find an optimized task scheduling method that minimizes the total time and
consumption of non-green energy.

The proposed method assumes that the number of incoming tasks remains constant, and no inaccuracies
such as predictions, equipment failures, and communication delays were considered. The performance of the
proposed method has been tested using simulations.

All contributions that solve the problem using approaches other than optimization, combinatorial, and
reinforcement learning are summarized in Tables 8 and 9. Problem-specific approaches are very efficient within
their defined framework, but their rigidity limits their adaptability to dynamic or unforeseen conditions. A

26

promising direction for future research is the development of hybrid models that combine the precision of
problem-specific methods with the flexibility of generalizable approaches such as machine learning or adaptive
algorithms to improve their robustness in changing environments.

8 Conclusion

In this paper, we have reviewed the task allocation and scheduling strategies and associated metrics suitable
for robotic network systems, including cloud, fog, and edge computing environments. We have created seven
summary tables (in the supplementary material) that summarize the main points of each approach. The different
approaches have been developed with different optimization goals, such as minimizing completion time, energy
consumption, communication overhead and computation time, or maximizing resource efficiency and the number
of completed tasks.

We have found that many studies focus on task scheduling without considering certain constraints such
as deadlines or task execution dependencies, while other studies prioritize certain goals, which often leads to
trade-offs. For example, increasing the number of completed tasks typically increases energy consumption and
computational costs. We have also reviewed new architectures that aim to offload computations to nearby
processing units, such as fog or cloud, which can lead to additional communication delays.

The current trend suggests that combinatorial optimization is one of the most effective approaches, especially
as faster processing units reduce the need for cloud infrastructures, allowing more tasks to be processed locally
on the edge. In addition, we observed the increasing use of reinforcement learning approaches to solve task
allocation and scheduling problems. Nevertheless, there is still a need for a unified theory that integrates
different structural properties of tasks and architectures while adapting to specific problems in robotic networks,
especially those operating in noisy or unpredictable environments.

Some important open problems remain:

• The development of unified frameworks that address the trade-offs between different optimization goals
(e.g., completion time vs. energy consumption).

• Investigate whether a global optimizer can be developed that can handle a wide range of task allocation
and scheduling challenges.

• Develop adaptive algorithms that can switch between optimization and reinforcement learning methods
depending on the problem context to take advantage of both methods.

• Develop more robust models that work effectively in less controlled, real-world scenarios with dynamic
environments and hardware constraints.

Practical challenges such as hardware limitations, dynamic and unpredictable environments, and real-time
processing requirements are essential to consider when moving from theory to real-world deployment. Although
this paper focuses primarily on theoretical methods, it is important to understand how these methods can be
applied to real-world robotic systems. Developing scalable solutions that can operate under real-time conditions
and hardware constraints remains a key challenge for future work. Further research is needed to close the gap
between theoretical approaches and their practical implementation in large-scale, real-world robotic networks.
Future research should also focus on developing hybrid models that combine the strengths of cloud, fog and
edge computing while ensuring adaptability to real-time conditions and unreliable environments. In particular,
methods that can seamlessly switch between centralized and decentralized processing depending on the needs
of the system will be crucial for the next generation of robotic networks.

Acknowledgments

This work was partially supported by operation Centro-01-0145-FEDER-000019 - C4 - Centro de Competências
em Cloud Computing, co-financed by the European Regional Development Fund (ERDF) through the Pro-
grama Operacional Regional do Centro (Centro 2020), in the scope of the Sistema de Apoio à Investigação
Cientif́ıca e Tecnológica - Programas Integrados de IC&DT. This work is supported by NOVA LINCS ref.
UIDB/04516/2020 (https://doi.org/10.54499/UIDB/04516/2020) and ref. UIDP/04516/2020 (https://
doi.org/10.54499/UIDP/04516/2020) with the financial support of FCT.IP. It was also partially supported
by the Computer Science and Communication Research Centre (CIIC), Escola Superior de Tecnologia e Gestão
(UIDB/04524/2020), with financial support from FCT-Fundação para a Ciência e a Tecnologia under reference
CEECINST/00060/2021/CP2902/CT0009 (https://doi.org/10.54499/CEECINST/00060/2021/CP2902/CT0009).
Part of this work was conducted while Saeid Alirezazadeh was affiliated with C4-Cloud Computing Competence
Center, Universidade da Beira Interior, Covilhã, Portugal. He is currently with the Computer Science and

27

https://doi.org/10.54499/UIDB/04516/2020
https://doi.org/10.54499/UIDP/04516/2020
https://doi.org/10.54499/UIDP/04516/2020
https://doi.org/10.54499/CEECINST/00060/2021/CP2902/CT0009

Communication Research Centre (CIIC), Escola Superior de Tecnologia e Gestão of Instituto Politécnico de
Leiria, Portugal.

References

[1] Sheshadri Chatterjee, Ranjan Chaudhuri, and Demetris Vrontis. Usage intention of social robots for
domestic purpose: From security, privacy, and legal perspectives. Information Systems Frontiers, Sep
2021.

[2] Amritha Ananthanarayanan, Chase G. Frazelle, Sowmya Kethireddy, Chen-Ho Ko, Rohan Kumar, Vig-
nesh Prabhu, Bhargav Srinivas Vasudevan, and Ian D. Walker. Application of robotics to domestic and
environmental cleanup tasks. In Kohei Arai, editor, Intelligent Computing, pages 657–665, Cham, 2022.
Springer International Publishing.

[3] Hisashi Osumi. Application of robot technologies to the disaster sites. Report of JSME Research Committee
on the Great East Japan Earthquake Disaster, pages 58–74, 2014.

[4] Nathan Michael, Shaojie Shen, Kartik Mohta, Vijay Kumar, Keiji Nagatani, Yoshito Okada, Seiga Kirib-
ayashi, Kazuki Otake, Kazuya Yoshida, Kazunori Ohno, Eijiro Takeuchi, and Satoshi Tadokoro. Collabo-
rative Mapping of an Earthquake Damaged Building via Ground and Aerial Robots, pages 33–47. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2014.

[5] G. Hu, W. P. Tay, and Y. Wen. Cloud robotics: architecture, challenges and applications. IEEE Network,
26(3):21–28, May 2012.

[6] Gerard T. McKee and Paul S. Schenker. Networked robotics. In Gerard T. McKee and Paul S. Schenker,
editors, Sensor Fusion and Decentralized Control in Robotic Systems III, volume 4196, pages 197 – 209.
International Society for Optics and Photonics, SPIE, 2000.

[7] Gerard McKee. What is Networked Robotics?, pages 35–45. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008.

[8] M. Tenorth, K. Kamei, S. Satake, T. Miyashita, and N. Hagita. Building knowledge-enabled cloud robotics
applications using the ubiquitous network robot platform. In 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 5716–5721, Nov 2013.

[9] K. Kamei, S. Nishio, N. Hagita, and M. Sato. Cloud networked robotics. IEEE Network, 26(3):28–34,
May 2012.

[10] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg. A survey of research on cloud robotics and automation.
IEEE Transactions on Automation Science and Engineering, 12(2):398–409, April 2015.

[11] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and its role in the
internet of things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing,
MCC-12, pages 13–16, New York, NY, USA, 2012. Association for Computing Machinery.

[12] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and challenges. IEEE Internet of
Things Journal, 3(5):637–646, Oct 2016.

[13] Saeid Alirezazadeh and Lúıs A. Alexandre. Dynamic task scheduling for human-robot collaboration. IEEE
Robotics and Automation Letters, 7(4):8699–8704, 2022.

[14] Hebert Azevedo-Sa, X. Jessie Yang, Lionel P. Robert, and Dawn M. Tilbury. A unified bi-directional
model for natural and artificial trust in human–robot collaboration. IEEE Robotics and Automation
Letters, 6(3):5913–5920, 2021.

[15] Dalia Abdulkareem Shafiq, Noor Zaman Jhanjhi, Azween Abdullah, and Mohammed A. Alzain. A load
balancing algorithm for the data centres to optimize cloud computing applications. IEEE Access, 9:41731–
41744, 2021.

[16] Sourabh Bharti and Alan McGibney. Corol: A reliable framework for computation offloading in collabo-
rative robots. IEEE Internet of Things Journal, pages 1–13, 2022.

[17] Xing Fu, Bing Tang, Feiyan Guo, and Linyao Kang. Priority and dependency-based dag tasks offloading in
fog/edge collaborative environment. In 2021 IEEE 24th International Conference on Computer Supported
Cooperative Work in Design (CSCWD), pages 440–445, 2021.

28

[18] M. Orr and O. Sinnen. Integrating task duplication in optimal task scheduling with communication delays.
IEEE Transactions on Parallel and Distributed Systems, 31(10):2277–2288, 2020.

[19] Minjia Li, Yikun Hu, Cen Chen, Zheng Xiao, Chubo Liu, and Kenli Li. Work in progress: Topology-based
multilevel algorithm for large-scale task scheduling in clouds. In 2021 IEEE 27th Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 501–504, 2021.

[20] Fuguang Yao, Changjiu Pu, and Zongyin Zhang. Task duplication-based scheduling algorithm for budget-
constrained workflows in cloud computing. IEEE Access, 9:37262–37272, 2021.

[21] Xiaoshan Bai, Andres Fielbaum, Maximilian Kronmüller, Luzia Knoedler, and Javier Alonso-Mora.
Group-based distributed auction algorithms for multi-robot task assignment. IEEE Transactions on
Automation Science and Engineering, pages 1–12, 2022.

[22] Saeid Alirezazadeh, André Correia, and Lúıs A. Alexandre. Optimal algorithm allocation for robotic
network cloud systems. Robotics and Autonomous Systems, 154:104144, 2022.

[23] Long Jin, Siqi Liang, Xin Luo, and MengChu Zhou. Distributed and time-delayed k-winner-take-all
network for competitive coordination of multiple robots. IEEE Transactions on Cybernetics, pages 1–12,
2022.

[24] Simeng Bian, Xi Huang, and Ziyu Shao. Online task scheduling for fog computing with multi-resource
fairness. In 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), pages 1–5, 2019.

[25] Shiyao Ding and Donghui Lin. Dynamic task allocation for cost-efficient edge cloud computing. In 2020
IEEE International Conference on Services Computing (SCC), pages 218–225, 2020.

[26] Saeid Alirezazadeh and Lúıs A. Alexandre. Dynamic task allocation for robotic network cloud
systems. In 2020 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big
Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking
(ISPA/BDCloud/SocialCom/SustainCom), pages 1221–1228, 2020.

[27] FasterCapital. Successful resource allocation examples, 2024.

[28] AR. Arunarani, D. Manjula, and Vijayan Sugumaran. Task scheduling techniques in cloud computing: A
literature survey. Future Generation Computer Systems, 91:407 – 415, 2019.

[29] Yara Rizk, Mariette Awad, and Edward W. Tunstel. Cooperative heterogeneous multi-robot systems: A
survey. ACM Comput. Surv., 52(2), apr 2019.

[30] Viraj Dawarka and Girish Bekaroo. Building and evaluating cloud robotic systems: A systematic review.
Robotics and Computer-Integrated Manufacturing, 73:102240, 2022.

[31] Maria Gini. Multi-robot allocation of tasks with temporal and ordering constraints. In AAAI Conference
on Artificial Intelligence, 2017.

[32] James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM, 26(11):832–843,
November 1983.

[33] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial Intelligence, 49(1):61
– 95, 1991.

[34] Ernesto Nunes, Marie Manner, Hakim Mitiche, and Maria Gini. A taxonomy for task allocation problems
with temporal and ordering constraints. Robotics and Autonomous Systems, 90:55 – 70, 2017. Special
Issue on New Research Frontiers for Intelligent Autonomous Systems.

[35] Dong-Hyun Lee. Resource-based task allocation for multi-robot systems. Robotics and Autonomous
Systems, 103:151 – 161, 2018.

[36] X. Zhou, H. Wang, and B. Ding. How many robots are enough: A multi-objective genetic algorithm for
the single-objective time-limited complete coverage problem. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 2380–2387, 2018.

[37] Seth Pettie. Minimum Spanning Trees, pages 541–544. Springer US, Boston, MA, 2008.

[38] R. L. Graham and P. Hell. On the history of the minimum spanning tree problem. Annals of the History
of Computing, 7(1):43–57, 1985.

29

[39] J. Milnor. Morse theory. Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics
Studies, No. 51. Princeton University Press, Princeton, N.J., 1963.

[40] M. Rantanen, N. Mastronarde, J. Hudack, and K. Dantu. Decentralized task allocation in lossy networks:
A simulation study. In 2019 16th Annual IEEE International Conference on Sensing, Communication,
and Networking (SECON), pages 1–9, 2019.

[41] Gennaro Notomista, Siddharth Mayya, Seth Hutchinson, and Magnus Egerstedt. An optimal task allo-
cation strategy for heterogeneous multi-robot systems. 2019 18th European Control Conference (ECC),
Jun 2019.

[42] Yousef Emam, Siddharth Mayya, Gennaro Notomista, Addison Bohannon, and Magnus Egerstedt. Adap-
tive task allocation for heterogeneous multi-robot teams with evolving and unknown robot capabilities.
In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages 7719–7725, 2020.

[43] S. Rahmanpour and R. M. Esfanjani. Decentralized energy-aware co-planning of motion and communica-
tion strategies for networked mobile robots. IEEE Transactions on Cognitive and Developmental Systems,
12(3):519–528, 2020.

[44] K. Brown, O. Peltzer, M. A. Sehr, M. Schwager, and M. J. Kochenderfer. Optimal sequential task
assignment and path finding for multi-agent robotic assembly planning. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 441–447, 2020.

[45] J. K. Behrens, K. Stepanova, and R. Babuska. Simultaneous task allocation and motion scheduling for
complex tasks executed by multiple robots. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 11443–11449, 2020.

[46] A. A. Goldstein. Cauchy’s method of minimization. Numerische Mathematik, 4(1):146–150, Dec 1962.

[47] J. K. Behrens, R. Lange, and M. Mansouri. A constraint programming approach to simultaneous task
allocation and motion scheduling for industrial dual-arm manipulation tasks. In 2019 International Con-
ference on Robotics and Automation (ICRA), pages 8705–8711, 2019.

[48] Edward D. Gaughan. Introduction to analysis. Brooks/Cole Publishing Co., Pacific Grove, CA, fourth
edition, 1993.

[49] A Mixed-Integer Linear Programming Formulation for Human Multi-Robot Task Allocation, 2021.

[50] Xiao-Fang Liu, Yongchun Fang, Zhi-Hui Zhan, and Jun Zhang. Strength learning particle swarm optimiza-
tion for multiobjective multirobot task scheduling. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 53(7):4052–4063, 2023.

[51] Ye Wang, Xuewu Wang, Sanyan Chen, and Xingsheng Gu. Multi-station multi-robot welding system
planning and scheduling based on stnsga-d: An industrial case study. IEEE Transactions on Automation
Science and Engineering, pages 1–15, 2023.

[52] Fei Yan, Jing Chu, Jinwen Hu, and Xiaoping Zhu. Cooperative task allocation with simultaneous ar-
rival and resource constraint for multi-uav using a genetic algorithm. Expert Systems with Applications,
245:123023, 2024.

[53] L. Wang, M. Liu, and M. Q. . Meng. A hierarchical auction-based mechanism for real-time resource
allocation in cloud robotic systems. IEEE Transactions on Cybernetics, 47(2):473–484, 2017.

[54] S. Li, Z. Zheng, W. Chen, Z. Zheng, and J. Wang. Latency-aware task assignment and scheduling in
collaborative cloud robotic systems. In 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), pages 65–72, July 2018.

[55] J. Chen. A cloud resource allocation method supporting sudden and urgent demands. In 2018 Sixth
International Conference on Advanced Cloud and Big Data (CBD), pages 66–70, 2018.

[56] Dan Benanav, Deepak Kapur, and Paliath Narendran. Complexity of matching problems. Journal of
Symbolic Computation, 3(1):203–216, 1987.

[57] A. K. Singh and J. Kumar. Secure and energy aware load balancing framework for cloud data centre
networks. Electronics Letters, 55(9):540–541, 2019.

[58] T. Liu, L. Sun, R. Chen, F. Shu, X. Zhou, and Z. Han. Martingale theory-based optimal task allocation
in heterogeneous vehicular networks. IEEE Access, 7:122354–122366, 2019.

30

[59] Kishor S. Trivedi. Probability and statistics with reliability, queuing, and computer science applications.
John Wiley & Sons, Inc., Hoboken, NJ, second edition, 2016. For the first edition see [MR0657943].

[60] S. Geng, D. Wu, P. Wang, and X. Cai. Many-objective cloud task scheduling. IEEE Access, 8:79079–79088,
2020.

[61] Lin-Yu Tseng and Shyi-Ching Liang. A hybrid metaheuristic for the quadratic assignment problem.
Computational Optimization and Applications, 34(1):85–113, May 2006.

[62] H. Tran-Dang and D. S. Kim. Task priority-based resource allocation algorithm for task offloading in
fog-enabled iot systems. In 2021 International Conference on Information Networking (ICOIN), pages
674–679, 2021.

[63] Wuhui Chen, Yuichi Yaguchi, Keitaro Naruse, Yutaka Watanobe, and Keita Nakamura. Qos-aware robotic
streaming workflow allocation in cloud robotics systems. IEEE Transactions on Services Computing,
14(2):544–558, 2021.

[64] Daniel Casini, Alessandro Biondi, and Giorgio Buttazzo. Task splitting and load balancing of dynamic
real-time workloads for semi-partitioned edf. IEEE Transactions on Computers, 70(12):2168–2181, 2021.

[65] A. Burns, R. I. Davis, P. Wang, and F. Zhang. Partitioned edf scheduling for multiprocessors using a c=d
task splitting scheme. Real-Time Systems, 48(1):3–33, Jan 2012.

[66] Huayi Yin, Xindong Huang, and Erzhong Cao. A cloud-edge-based multi-objective task scheduling ap-
proach for smart manufacturing lines. Journal of Grid Computing, 22(1):9, Jan 2024.

[67] S. Chopra, G. Notarstefano, M. Rice, and M. Egerstedt. A distributed version of the hungarian method
for multirobot assignment. IEEE Transactions on Robotics, 33(4):932–947, 2017.

[68] Rainer Burkard, Mauro Dell’Amico, and Silvano Martello. Assignment Problems. Society for Industrial
and Applied Mathematics, 2012.

[69] Xinye Chen, Ping Zhang, Guanglong Du, and Fang Li. A distributed method for dynamic multi-robot
task allocation problems with critical time constraints. Robotics and Autonomous Systems, 118:31 – 46,
2019.

[70] Hamza Djigal, Jun Feng, and Jiamin Lu. Task scheduling for heterogeneous computing using a predict
cost matrix. In Proceedings of the 48th International Conference on Parallel Processing: Workshops, ICPP
2019, New York, NY, USA, 2019. Association for Computing Machinery.

[71] Hamid Arabnejad and Jorge G. Barbosa. List scheduling algorithm for heterogeneous systems by an
optimistic cost table. IEEE Transactions on Parallel and Distributed Systems, 25(3):682–694, 2014.

[72] H. Topcuoglu, S. Hariri, and Min-You Wu. Performance-effective and low-complexity task scheduling for
heterogeneous computing. IEEE Transactions on Parallel and Distributed Systems, 13(3):260–274, 2002.

[73] Naqin Zhou, Deyu Qi, Xinyang Wang, Zhishuo Zheng, and Weiwei Lin. A list scheduling algorithm for
heterogeneous systems based on a critical node cost table and pessimistic cost table. Concurrency and
Computation: Practice and Experience, 29(5):e3944, 2017. e3944 CPE-15-0408.R2.

[74] S. Willard. General Topology. Addison-Wesley series in mathematics. Dover Publications, 2004.

[75] Hanfu Wang, Weidong Chen, and Jingchuan Wang. Coupled task scheduling for heterogeneous multi-robot
system of two robot types performing complex-schedule order fulfillment tasks. Robotics and Autonomous
Systems, page 103560, 2020.

[76] S. K. K. Hari, A. Nayak, and S. Rathinam. An approximation algorithm for a task allocation, sequencing
and scheduling problem involving a human-robot team. IEEE Robotics and Automation Letters, 5(2):2146–
2153, 2020.

[77] G. N. Frederickson, M. S. Hecht, and C. E. Kim. Approximation algorithms for some routing problems.
In 17th Annual Symposium on Foundations of Computer Science (sfcs 1976), pages 216–227, 1976.

[78] Matthew Malencia, Vijay Kumar, George Pappas, and Amanda Prorok. Fair robust assignment using
redundancy. IEEE Robotics and Automation Letters, 6(2):4217–4224, 2021.

[79] Fred Glover, Randy Glover, and Darwin Klingman. Threshold assignment algorithm, pages 12–37. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1986.

31

[80] Yuvraj Sahni, Jiannong Cao, Lei Yang, and Yusheng Ji. Multihop offloading of multiple dag tasks in
collaborative edge computing. IEEE Internet of Things Journal, 8(6):4893–4905, 2021.

[81] Fabio Fusaro, Edoardo Lamon, E. Momi, and A. Ajoudani. An integrated dynamic method for allocating
roles and planning tasks for mixed human-robot teams. 2021 30th IEEE International Conference on
Robot & Human Interactive Communication (RO-MAN), pages 534–539, 2021.

[82] Saeid Alirezazadeh and Lúıs A. Alexandre. Static algorithm allocation with duplication in robotic network
cloud systems. IEEE Transactions on Parallel and Distributed Systems, 34(6):1897–1908, 2023.

[83] B. A. Al-Maytami, P. Fan, A. Hussain, T. Baker, and P. Liatsis. A task scheduling algorithm with
improved makespan based on prediction of tasks computation time algorithm for cloud computing. IEEE
Access, 7:160916–160926, 2019.

[84] Dongjin Yu, Yuke Ying, Lei Zhang, Chengfei Liu, Xiaoxiao Sun, and Hongsheng Zheng. Balanced schedul-
ing of distributed workflow tasks based on clustering. Knowledge-Based Systems, 199:105930, 2020.

[85] Wei Zheng, Zhaobin Chen, Rizos Sakellariou, Lu Tang, and Jinjun Chen. Evaluating dag scheduling
algorithms for maximum parallelism. In 2020 IEEE Intl Conf on Parallel Distributed Processing with
Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing
Networking (ISPA/BDCloud/SocialCom/SustainCom), pages 49–56, 2020.

[86] G. Cordasco, G. Malewic, and A. Rosenberg. Advances in ic-scheduling theory: Scheduling expansive and
reductive dags and scheduling dags via duality. IEEE Transactions on Parallel and Distributed Systems,
18(11):1607–1617, 2007.

[87] Gennaro Cordasco and Arnold L. Rosenberg. Area-maximizing schedules for series-parallel dags. In
Pasqua D’Ambra, Mario Guarracino, and Domenico Talia, editors, Euro-Par 2010 - Parallel Processing,
pages 380–392, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[88] Saeid Alirezazadeh and Lúıs A. Alexandre. Optimal algorithm allocation for single robot cloud systems.
IEEE Transactions on Cloud Computing, 11(1):324–335, 2023.

[89] Jessen T Havill, Weizhen Mao, and Vesselin Dimitrov. Improved parallel job scheduling with overhead.
In Proceedings of the Seventh Joint Conference on Information Sciences, pages 393–396. Citeseer, 2003.

[90] Qimei Cui, Xiyu Zhao, Wei Ni, Zheng Hu, Xiaofeng Tao, and Ping Zhang. Multi-agent deep reinforce-
ment learning-based interdependent computing for mobile edge computing-assisted robot teams. IEEE
Transactions on Vehicular Technology, 72(5):6599–6610, 2023.

[91] J. Wang, L. Zhao, J. Liu, and N. Kato. Smart resource allocation for mobile edge computing: A deep
reinforcement learning approach. IEEE Transactions on Emerging Topics in Computing, pages 1–1, 2019.

[92] Seyedakbar Mostafavi and Vesal Hakami. A stochastic approximation approach for foresighted task
scheduling in cloud computing. Wireless Personal Communications, 114(1):901–925, Sep 2020.

[93] Yongkui Liu, Yaoyao Ping, Lin Zhang, Lihui Wang, and Xun Xu. Scheduling of decentralized robot
services in cloud manufacturing with deep reinforcement learning. Robotics and Computer-Integrated
Manufacturing, 80:102454, 2023.

[94] Benjamin Moseley and Shai Vardi. The efficiency-fairness balance of round robin scheduling. Operations
Research Letters, 50(1):20–27, 2022.

[95] Zhen Chen, Lin Zhang, Xiaohan Wang, and Kunyu Wang. Cloud–edge collaboration task scheduling in
cloud manufacturing: An attention-based deep reinforcement learning approach. Computers & Industrial
Engineering, 177:109053, 2023.

[96] Peisong Li, Ziren Xiao, Xinheng Wang, Kaizhu Huang, Yi Huang, and Honghao Gao. Eptask: Deep
reinforcement learning based energy-efficient and priority-aware task scheduling for dynamic vehicular
edge computing. IEEE Transactions on Intelligent Vehicles, pages 1–17, 2023.

[97] Philipp Schillinger, Mathias Bürger, and Dimos V. Dimarogonas. Simultaneous task allocation and plan-
ning for temporal logic goals in heterogeneous multi-robot systems. The International Journal of Robotics
Research, 37(7):818–838, 2018.

[98] M. C. Gombolay, R. J. Wilcox, and J. A. Shah. Fast scheduling of robot teams performing tasks with
temporospatial constraints. IEEE Transactions on Robotics, 34(1):220–239, 2018.

32

[99] S. I. Kim and J. Kim. A method to construct task scheduling algorithms for heterogeneous multi-core
systems. IEEE Access, 7:142640–142651, 2019.

[100] Yiannis Kantaros and Michael M Zavlanos. Stylus*: A temporal logic optimal control synthesis algorithm
for large-scale multi-robot systems. The International Journal of Robotics Research, 39(7):812–836, 2020.

[101] Imre Simon. Piecewise testable events. In H. Brakhage, editor, Automata Theory and Formal Languages,
pages 214–222, Berlin, Heidelberg, 1975. Springer Berlin Heidelberg.

[102] Péter Pál Pach. Normal forms under simon’s congruence. Semigroup Forum, 97(2):251–267, 2018.

[103] Andrea Pupa, Wietse Van Dijk, and Cristian Secchi. A human-centered dynamic scheduling architecture
for collaborative application. IEEE Robotics and Automation Letters, 6(3):4736–4743, 2021.

[104] Tong Wu, Xiaochen Ma, Chuan Zhang, Ximeng Liu, Guomin Yang, and Liehuang Zhu. Towards fine-
grained task allocation with bilateral access control for intelligent transportation systems. IEEE Internet
of Things Journal, pages 1–15, 2023.

[105] P. Zhang and M. Zhou. Dynamic cloud task scheduling based on a two-stage strategy. IEEE Transactions
on Automation Science and Engineering, 15(2):772–783, 2018.

[106] Murk, A. W. Malik, I. Mahmood, N. Ahmed, and Z. Anwar. Big data in motion: A vehicle-assisted urban
computing framework for smart cities. IEEE Access, 7:55951–55965, 2019.

[107] A. Botta, L. Gallo, and G. Ventre. Cloud, fog, and dew robotics: Architectures for next generation
applications. In 2019 7th IEEE International Conference on Mobile Cloud Computing, Services, and
Engineering (MobileCloud), pages 16–23, April 2019.

[108] Chuting Wang, Ruifeng Guo, Haoyu Yu, Yi Hu, Chao Liu, and Changyi Deng. Task offloading in cloud-
edge collaboration-based cyber physical machine tool. Robotics and Computer-Integrated Manufacturing,
79:102439, 2023.

[109] Yongsheng Hao, Qi Wang, Tinghuai Ma, Jinglin Du, and Jie Cao. Energy allocation and task scheduling
in edge devices based on forecast solar energy with meteorological information. Journal of Parallel and
Distributed Computing, 177:171–181, 2023.

33

Summary Tables

Optimization

All contributions that formulate the problem as an optimization problem are summarized in Tables 1 to 4.

Combinatorial

All contributions that solve the problem using a combinatorial approach are summarized in Tables 5 and 6.

Reinforcement Learning

All contributions that solve the problem using a reinforcement learning approach are summarized in Table 7.

Alternative approaches

All contributions that solve the problem using approaches other than optimization, combinatorial, and rein-
forcement learning are summarized in Tables 8 and 9.

1

Table 1: Papers on task allocation and scheduling in robotic network systems using an optimization approach
for solution.

PaperYear Static/
Dy-
namic

Load
bal-
anc-
ing

Cloud
In-
fras-
truc-
ture

Number
of
robots

Parameters Main objectives Approach Used Restrictions Problems Type of
Experi-
ments

[31]
2017 DynamicNo No Several Temporal con-

straints
Minimize a
cost function
or maximize a
reward function
for all robots
for completing
their tasks

Branch and Bounds
or metaheuristics
for the central-
ized model and
Distributed Con-
straint (DCOP)-
Based Methods
or Market Based
Methods for the de-
centralized model

Stable communi-
cation between
all robots in both
models

Requires reschedul-
ing and new solu-
tions upon arrival
of new tasks and
failure of commu-
nication. Requires
an approximation
method to reduce
computation time.
Multi-task robots
and multi-robot
tasks are not in-
cluded and disjoint
temporal models
are not considered

-

[34]
2017 DynamicNo No Several Time windows,

and tasks’ order
Developing a
generalized
optimization
model for task
allocation prob-
lem that all
the existing
methods can be
extracted from
it

A generic function
optimization prob-
lem

Time constraints
are simple, time-
critical tasks
cannot be correctly
assigned to robots

Solution method
varies from one ob-
jective to another
and solution of
multiple objective
problems is not
easy to obtain

-

[53]
2017 DynamicNo Yes Several Communication

time
Minimizing
communication
and computa-
tion costs

Hierarchical
auction-based

Latency and mem-
ory usage by robots
are not considered.
No fair comparison
with state-of-
the-art methods.
Robots require
to communicate
with the cloud to
perform all their
assigned tasks

Dynamic change
of architecture
topology and in-
cluding the case
where a robot do
not require com-
munication with
the cloud are not
considered.

Simulation
and
real-
world

[35]
2018 DynamicNo No Several Task completion

time, resource
consumption,
communication
time

Minimize task
completion
time, resource
consumption,
and communi-
cation time

Market-based ap-
proach

Recharge time and
transfer time to
charging stations
may change the
solution

Compared with
the cases without
task rescheduling
and without con-
sidering resources,
without testing
and by design the
improvement of the
performance can
be observed

Simulation

[54]
2018 Static No Yes Several Execution time,

transmission
time, depen-
dencies of
algorithms

Minimize over-
all time for
performing
tasks by the
robots

Mixed-integer
nonlinear program-
ming

Does not fully ac-
count the commu-
nication time

Memory require-
ment by a robots to
perform algorithms
is not included.
Time initiation
should be when
a robot send a
request.

Simulations

[36]
2018 DynamicNo No Several Number of

robots, time
limit

Find the small-
est number of
robots in a
given time limit
and assign tasks
to them so that
the robots can
complete their
tasks within the
time-limit

A multi-objective
optimization prob-
lem and a genetic
algorithm is used
to find a solution

weights of are non-
negative integers.
Partitions should
not exceed the time
limit and number
of parts equal to
the number of
robots. The metric
for defing bands is
not defined.

The partitioning of
vertices into a fixed
number of parts is
not unique. When
solving the opti-
mization problem,
it should include
a test for possible
cycles after adding
each random edge.

Simulation
and
real-
world

[55]
2018 DynamicPartiallyYes - Sudden de-

mands require
urgent re-
sponses

Minimizing
number of vir-
tual machines
and physi-
cal machines
with mini-
mum distance
between vir-
tual machines
and physical
machines to
ensure resource
allocation op-
timization and
timeliness

A multi-objective
optimization prob-
lem and a genetic
algorithm is used
to find a solution

The multi-
objective model
is an NP-complete
problem. Load
unbalance degrees
are compare after
allocating virtual
machines on physi-
cal machines. It is
assumed that the
virtual machines
are running under
full load

Some terms are not
defined. The sec-
ond objective is a
constant minimiza-
tion.

Simulation

[41]
2019 Static No No Several Capabilities

and energy
consumptions

Minimizing the
cost function

Mixed Integer
Quadratic Problem
and updating the
priorities of the
tasks by time is
used for solution

The cost function
must be of class
C1 and the high-
est priority should
be unique

proposed method
works only for spe-
cial cost functions
and environmental
changes is not
considered

Real-
world
and
simula-
tion

[40]
2019 DynamicNo No Several Communication

instability
Maximize the
sum of the
agents’ utili-
ties, where the
agent’s utility
is defined as a
function of the
tasks assigned
to the agent in
the completion
order

A multi-objective
optimization prob-
lem solved by
an auction-based
strategy

Tasks with rela-
tively very long
execution times
with respect to the
average communi-
cation time are not
considered

Logarithmically
transforming the
main objective
translate the
problem to linear
programming. The
term bundle has
the mathematical
meaning and is
not an appropriate
term to be used in
this context.

Simulation

[57]
2019 DynamicYes Yes - Energy con-

supmtion,
resource utiliza-
tion, Security

Load balancing,
minimizing
the energy
consumption,
maximizing
resource uti-
lization, and
maximize the
security

A multi-objective
optimization and
Pareto front for
solution

Different energy
consumption for
different tasks and
data transfer cost
are not considered

Number of re-
quested tasks and
their energy con-
sumption are not
considered

Simulation

2

Table 2: Papers on task allocation and scheduling in robotic network systems using an optimization approach
for solution.

PaperYear Static/
Dy-
namic

Load
bal-
anc-
ing

Cloud
In-
fras-
truc-
ture

Number
of
robots

Parameters Main objectives Approach Used Restrictions Problems Type of
Experi-
ments

[58]
2019 DynamicNo Yes Several Delay for task

offloading
Model the total
delay for task
offloading, con-
struct an opti-
mal task alloca-
tion minimizing
the total delay

Optimization prob-
lem is described
by a probabilis-
tic model of the
total delay and
considering the
data arrival and
service as (super)
martingales

No explanation for
cases: input data
must be collected
from other nodes, a
minimum data size
for processing, and
the optimal parti-
tioning

The departure pro-
cess should be min-
plus. The defined
threshold should be
a global threshold.
For a task, only one
source node is con-
sidered. Propoga-
tion delay is as-
sumed to be con-
stant. RSUs are
considered closer to
edges than cloud.

Simulation

[42]
2020 DynamicNo No Several Energy con-

sumptions and
capabilities

Minimizing the
cost function
in dynamic
environment

Similar to [41], up-
dates the states of
the robots by time
and updates priori-
ties by environmen-
tal changes

Cost function is
continuously dif-
ferentiable. The
highest priority
task is unique

Environmental
disturbance may
reduce the cost
and requires the
frequency of the
environmental
change

Real-
world

[60]
2020 DynamicPartiallyYes - time, cost,

resource utiliza-
tion

Load balancing
and minimizing
the resource
utilization,
time, and cost

A multi-objective
optimization and
use the hybrid
angle strategy for
solution, the objec-
tive of overloading
made for load bal-
ancing

Combines ant
colony, genetic
algorithm, and
local search to find
an optimal solution
which requires high
computational time

Cannot be applied
to a continuous
and non-convex
problem with a
large population
size

Simulation

[44]
2020 DynamicNo No Several task depen-

dencies, task
scheduling,
route-planning,
collision avoid-
ance, makespan

Minimizing
makespan and
avoiding colli-
sions

Multi-objective
optimization prob-
lem with Traveling
Salesman, tree
search, and A∗

searches are used
for solution.

The condition for
moving an object
that is the object
and the robot have
the same position
is not sufficient.
There should be an
initial station.

To assure the
conflict-free route
for the second
time, aonflict
avoidance should
be added. By
construction, the
runtime of ISPS
must be higher
than that of NBS
all the time but,
in the results, it is
smaller than the
runtime of NBS
most of the time.

Simulation

[45]
2020 DynamicNo No 2 Collision avoid-

ance, schedul-
ing, makespan,
motion plan-
ning, average
execution time

Minimizing
makespan and
avoiding colli-
sions

A multi-objective
optimization
problem with back-
tracking search
method to find
solutions

Robots are identi-
cal. Region size
and time intervals
are not described.

In backtracking
search the first
upper bound is by
a random selection
on the solution
space, and the
steps to reduce up-
per bounds are not
described. Differ-
ent upper bounds
yield different
solutions. Robot
dependency is not
included. Possible
collisions between
components of a
robot. Collision
avoidance depends
on voxelization
sizes.

Simulation

[43]
2020 DynamicNo No Several Movement and

communication
Motion plan-
ning and com-
munication
strategies min-
imizing energy
consumption
and collision
avoidance.

Convex optimiza-
tion problem

Dynamic obsta-
cles. Requires
tie-breaker for
robots with iden-
tical distances
to a spot. True
optimal assignment
of robots is not
always by finding
the shortest path.

Requires to solve
the minimization
problem of the to-
tal paths traveled
by all robots to
find the optimal
assignment. Re-
quires a constraint
on the threshold
radius around the
robots.

Simulation

[62]
2021 DynamicPartiallyYes Several Response time,

available re-
source, task
order

Minimizing the
service provi-
sioning delay

An optimization
problem solved by
particle swarm op-
timization to find
the suboptimal
solution

All the fog nodes
should be adjacent.

Task orders such
as tasks to be
completed at the
same time or tasks
to be executed at
the same time are
not considered. In
the experiments
the request rate
is very small and
the communication
between the cloud
and the fogs is
very high, causing
delays.

Simulation

[17]
2021 Static No No Several task dependen-

cies, average
execution time,
communication
time, energy
consumption

Minimizing the
total execution
time and the to-
tal energy con-
sumption of all
edge devices

An optimization
problem with a
solution provides
by optimal subtask
scheduling

All edge and fog
nodes generate a
complete graph
with the identical
communication
speed. The initial
subtask of each
task required to be
executed on edge
devices.

Provides a thresh-
old instead of
minimizing the en-
ergy consumption.
Does not allow
ofloading subtasks
to neighbor edges.
Data transmission
speed and energy
consumption are
assumed to be
linear.

Simulation

3

Table 3: Papers on task allocation and scheduling in robotic network systems using an optimization approach
for solution.

PaperYear Static/
Dy-
namic

Load
bal-
anc-
ing

Cloud
In-
fras-
truc-
ture

Number
of
robots

Parameters Main objectives Approach Used Restrictions Problems Type of
Experi-
ments

[49]
2021 DyanamicPartiallyNo Several Makespan, ex-

ecution time,
quality indes,
supervision,
workload, re-
allocation

Minimizing
normalized
makespan while
maximizing
process quality
and minimizing
agents workload

A mixed-integer
linear program-
ming where solu-
tions are recur-
sively updated
after completion of
each task

Solution for the
case require multi-
ple re-allocations
is time-consuming
process, apart from
the parameters’
update times when
the number of
tasks assigned to
an agent is large

The threshold for
the cost is not
described. The
method does not
work for multi-
robot tasks. It
does not include
the tasks that
should be started
and finished at the
same time.

Simulation

[63]
2021 DyanamicNo Yes Several Execution time,

latency, energy
consumption,
characteristics
of tasks and
robots, group-
ing of robots

Optimization
of quality of
service by opti-
mizing latency,
energy con-
sumption and
costs, taking
into account the
specifications of
the architecture
and tasks

Mixed-integer lin-
ear programming,
where solutions are
determined using a
heuristic method

It must be deter-
mined in advance
which task is to be
performed by a sin-
gle robot or a group
of robots or moved
to the cloud.

The developed
model does not
take into account
the dependencies
between latency,
energy consump-
tion and costs.

Simulation

[64]
2021 DyanamicYes Yes Several Execution time,

latency, task
partitioning
and splitting,
load balancing.

Minimizing
latency, load
balancing and
maximizing
the number
of completed
tasks taking
into account the
time windows of
the tasks.

Optimization prob-
lem and estimated
solution using the
lower bound for la-
tency and solving
the dual problem

The performance of
the processors al-
ways remains the
same and there is
no communication
time between the
processors

The processors
may not always
have the same per-
formance if they
perform a task at
different times, and
the communication
delay and commu-
nication affect the
latency. Splitting
tasks also increases
latency because
it takes time to
switch from one
task to another

Simulation

[22]
2022 Static No Yes Several Task dependen-

cies, average
execution time,
communication
time, memory
usage

Simultaneously
minimiz-
ing all the
robots’memory
usage and the
total time to
execute all al-
gorithms

Combinatorial
graph theory
and multivariate
combinatorial op-
timization, and
the solution is
achieved with al-
gebraic norms and
branch-and-bound
algorithm.

Require complete
information about
the algorithms and
the robotic net-
work cloud system
architecture.

Cannot be applied
to the system when
a robot fails and
the architecture
changes dynami-
cally.

Simulation
on real-
world
data

[21]
2022 DynamicNo No Several Travel distance,

robots’ carrier
capacity

Minimizing the
total travel time
of all robots

Combinatorial op-
timization method
solved using an
auction-based
algorithm given
an initial feasible
solution.

Disturbances in
robots, energy
consumption, and
recharge time are
not considered.

The number of
robots is con-
sidered large to
obtain an initial
solution, while in
a real scenario the
number of robots is
usually limited.

Simulation

[50]
2023 DyanamicYes No Several Robots capac-

ity, resource
usage, start and
finish time of a
task

Task scheduling
for a robotic
network with
single task
robots and
multi-robot
tasks

Optimizing several
objectives such as
completion time,
makespan, robot
costs and balanc-
ing the workloads
using PSO method.

Robots should
have stable perfor-
mance. The search
for feasible solu-
tions for a large
system is very time
consuming and
can lead to a local
optimal solution

The correlation
between the objec-
tives is not con-
sidered. Makespan
minimization is
equivalent to bal-
ancing the loads.

Simulation

[51]
2023 DynamicNo No Several Completion

time, travel
time

Minimizing the
completion time
of welding a sin-
gle workpiece at
a single station,
the time differ-
ence between
the completion
times of adja-
cent stations,
and the path
length of robots
moving to the
station.

Multi-objective op-
timization problem
solved with an evo-
lutionary algorithm
that sorts the sta-
tions and robots
based on the ex-
pected completion
time and the paths
to the stations

Robots do not
collide with any
obstacles and have
constant veloci-
ties, after welding
each workpiece the
completed task
is immediately
removed and the
next task can be
replaced.

The dependencies
between the ob-
jectives were not
considered in the
formulation. The
formulations only
contain the times
for the completion
of the individ-
ual workpieces.
However, after
the completion of
each workpiece,
the station needs
a certain time to
remove the com-
pleted task so that
it is ready for the
next task. Possible
collisions between
the robots and the
need to redirect
them as they move
between stations
are not considered
in the formulation,
which can affect
the performance of
the system.

Simulations
and
real-
world

[66]
2024 DyanamicNo Yes - Task prior-

ity, energy
consumption,
transmission
time, time delay

Minimizing
latency and
energy con-
sumption.

Multi objective op-
timization solved
with PSO and GSA
method

Tasks are indepen-
dent.

In the real world,
most tasks are
interdependent and
the performance
of one task may
depend on the per-
formance of several
other tasks.

Simulation

4

Table 4: Papers on task allocation and scheduling in robotic network systems using an optimization approach
for solution.

PaperYear Static/
Dy-
namic

Load
bal-
anc-
ing

Cloud
In-
fras-
truc-
ture

Number
of
robots

Parameters Main objectives Approach Used Restrictions Problems Type of
Experi-
ments

[52]
2024 DyanamicNo No Several Energy con-

sumption,
resource re-
quirements
of the target,
UAV resource
limitation, path
planning, colli-
sion avoidance.

Minimizes the
total flight
distance of all
UAVs and the
maximum flight
distance of each
UAV

Combinatorial
optimization prob-
lem solved with a
modified genetic
algorithm, avoiding
the UAVs to be in
an infinite waiting
state by ordering
the targets based
on their respective
required resources.

UAVs must have a
fixed altitude and a
constant speed

In some scenarios,
a task cannot be
completed before
switching to an-
other task. For
example, if tasks
have deadlines
and, for a given
number of UAVs,
the total resources
carried by all UAVs
are less than the
resources required
to complete the
tasks in some of
the targets in the
ordered target list,
then the task will
be incomplete in
the next step, but
the task will be
ranked lower and
its deadline may be
exceeded before it
is completed.

Simulation

5

Table 5: Papers on task allocation and scheduling in robotic network systems using a combinatorial approach
for solution.

PaperYear Static/
Dy-
namic

Load
bal-
anc-
ing

Cloud
In-
fras-
truc-
ture

Number
of
robots

Parameters Main objectives Approach Used Restrictions Problems Type of
Experi-
ments

[67]
2017 DynamicNo No Several Total distance

traveled, cost
function

Minimizing the
cost function

Extension of the
Hungarian method
[68]

No fair comparison
with state-of-the-
art methods, No
tie-breaker to find
the most suitable
match

Depending on
the matching the
convergence rate
can be very slow.
It requires a load
balancing approach
to avoid assigning
most of the tasks
to a single robot.
Assumes all robots
capable of perform-
ing all tasks.

Simulation
and
real-
world

[83]
2019 Static PartiallyYes - Makespan,

resource uti-
lization, task
completion time

reducing
makespan
and maximizing
resource utiliza-
tion

Combinatorial
graph theory and
solution obtained
by matching

The complexity
of the algorithm
increases exponen-
tially by increasing
the number of
tasks

The algorithm does
not consider the
precedence order
between tasks

Simulation

[69]
2019 DynamicNo No Several Search, rescue Maximizing

the number
of rescued,
minimizing the
average waiting
time, minimiz-
ing the total
path cost

Combinatorial op-
timization method
by clustering tasks,
a proportional se-
lection strategy to
avoid a local opti-
mum, and a mar-
ket base approach
to find a solution

Clustering and pro-
portional selection
depend on the ini-
tial metric

Small metric for
clustering and/or
proportional selec-
tion, or for large
number of robots
may result in re-
moving some tasks
because of their
deadlines

Simulation

[70]
2019 DynamicPartiallyNo - Scheduling

length,
makespan,
lookahead, task
prioritizing

Minimizing
the scheduling
length

Combinatorial op-
timization method
solved by introduc-
ing lookahead in
task prioritization
and processor se-
lection

Compared only
with PEFT and
HEFT, which
are simple mod-
els. Requires the
comparison with
IPEFT

Metrics are defined
over each method
measure different
properties

Real-
world

[75]
2020 DynamicNo No Several Travel time,

completion time
Minimize the
maximum travel
times of collab-
orating robots

A matching prob-
lem in a combina-
torial graph opti-
mization

Solution space
of matching is
exponentially
larger then perfect
matching

Fails to schedule
the model with un-
certainties. Only a
certain robots may
be used to transfer
tasks due to their
proximity

Simulation

[18]
2020 Static No No - precedence rela-

tion and com-
munication cost

Task duplica-
tion to minimize
the overall com-
pletion time.

Combinatorial
graph theory using
branch-and-bound
search to find an
optimal solution.

DAGs with most
tasks with out-
degree of at least
2 are computation-
ally expensive.

It does not iden-
tify exactly which
tasks should be du-
plicated.

Real-
world

[85]
2020 DynamicNo Yes - DAG, exact

execution time,
availability,
parallelism

Maximizing
parallelism of
ready tasks

Combinatorial
graph theory

existence of multi-
ple sink and source
tasks. Finding
the priorities of
tasks can be time-
consuming.

Experiments show
the proposed
method has an
advantage over
other methods only
for DAGs with a
very small number
of nodes. Average
makespan reduc-
tions are compared
without describing
the makespans.

Real-
world

[84]
2020 DynamicPartiallyYes - Task cluster-

ing runtime,
load balancing,
dependency
balancing

Balancing the
queueing time
for schedul-
ing clusters
and find the
dependency
correlation
measure to find
the similarities
between tasks
by their data
dependencies.

Combinatorial
graph theory using
task clustering

Number of clusters
is known and find-
ing the maximum
dependency corre-
lations is the goal.
Tasks with identi-
cal execution times
are considered for
the first cluster.

The conclusion
that the number of
clusters is indepen-
dent of the graph
is incorrect.

Simulation

[76]
2020 DynamicNo No Several Misson time,

travel time,
waiting time,
processing time,
scheduling con-
straints

minimizing
the maximum
mission time
and satisfying
the scheduling
constraints for
human opera-
tors.

Combinatorial
graph theory with
a greedy heuristic
for solution

Requires minimiza-
tion of Idle times.
The ratio α is a
relatively large
value. Computa-
tion time of the
proposed method
is exponential in
general.

The travel time
should be modified
as from one task
to the next, deter-
mined by order of
the tasks. Ran-
dom assignment of
available human
operator to a robot
may cause a robot
to be Idle for a
long time

Simulation

[88]
2021 Static No Yes Single task dependen-

cies, average
execution time,
communication
time, memory
usage

Simultaneously
minimizing the
robot’s memory
usage and the
total time to
execute all al-
gorithms

Combinatorial
graph theory and
solution is ob-
tained by algebraic
norms and using
branch-and-bound
algorithm

Requires complete
information about
the algorithms

Cannot be applied
to the system with
multiple robots

Simulation
on real-
world
data

[78]
2021 DynamicNo No Several Redundant as-

signment, task
performance,
task cost

Improving per-
formace by a
fair redundant
assignment of
agents to tasks

Combinatorial
graph optimization
with the near-
optimal solution
obtainged by re-
laxing some of the
constraints, super-
modularity, and
applying a greedy
algorithm.

The thresholds
and the criterion
to terminate the
recursive thresh-
olding algorithm
are not described.
In the experiments
generate random
bipartite graphs
without consid-
ering that task
nodes must be with
degrees at least 1.

Each time, feasible
solutions replace
the initial solution
instead of being
added. The bound
of the relaxing
parameter and the
main objective
must be indepen-
dent as a necessary
condition to easier
obtan a solution.

Simulation
and
real-
world

6

Table 6: Papers on task allocation and scheduling in robotic network systems using a combinatorial approach
for solution.

PaperYear Static/
Dy-
namic

Load
bal-
anc-
ing

Cloud
In-
fras-
truc-
ture

Number
of
robots

Parameters Main objectives Approach Used Restrictions Problems Type of
Experi-
ments

[80]
2021 DynamicNo No Several task depen-

dencies, task
scheduling, col-
laborative edge,
network flow
dependencies,
task completion
time

Minimizing task
completion time
taking into
account depen-
dencies between
subtasks and
schedules net-
work flows

A combinatorial
optimization prob-
lem with solution
by heuristic search

It does not use the
full capacity of the
bandwidth for data
transmission.

Several notions
are not defined.
The metric de-
scribing priorities
of the subtasks is
not well-defined.
Experiments su-
perflous as by
construction of the
proposed method
has better perfor-
mance than the
methods LE, RE,
SOFS, and ALT.

Simulation
on real-
world
data

[19]
2021 Static Yes Yes - Makespan, task

arrival, commu-
nication time,
processing time,
bandwidth

Minimizing
completion time
with load bal-
ancing

Combinatorial
graph theory
approach with
clustering methd
for solution

Optimal perfor-
mance is when
the DAG can be
splited onceinto
DAGs with at most
a single edge con-
necting each class
to another.

For serial or par-
allel tasks, the
scheduling time is
higher than the
usual scheduling
methods because
of clustering
time. Requires
comparison with
state-of-the-art
methods.

-

[81]
2021 DyanamicNo No Several Cost, task de-

pendencies,
agent capa-
bility, human-
robot team

Minimizing the
cost

Combinatorial
graph theory with
clustering to ob-
tain allocation
solution and a
mixed-integer lin-
ear programming
to minimize the
cost.

Actual cost by
human should be
known. The solu-
tion space grows
exponentially.

Requires moni-
toring the human
agents. Human and
robot are not dis-
tinguished. There
are no comparisons
with state-of-the-
art methods.

Simulation

[20]
2021 Static Yes Yes - Budget, com-

munication
time, execution
time, task du-
plication

Minimizing the
completion time
of the tasks tak-
ing into accound
the price of us-
ing cloud

Combinatorial op-
timization with so-
lutions by duplicat-
ing task

The duplication is
regardless of im-
proving the perfor-
mance. The budget
must be large.

The sub-budget
and budget have
a different scales.
The total weights
is obtained by
adding terms with
different scales.

Simulation
and
real-
world

[15]
2021 DyanamicYes Yes - Makespan,

task arrival,
deadline, and
completion
time, resource
utilization

Minimizing
makespan and
maximizing
resource utiliza-
tion

Combinatorial op-
timization with a
greedy heuristic for
solution

Tasks with long
deadline can be
assigned to a same
virtual machine.
Optimal load bal-
ancing is only
for similar tasks’
lengths and short
deadlines.

For large number of
tasks the method
has poor perfor-
mance compared
to algorithms with
greedy natures.

Simulation

[16]
2022 DynamicNo Yes Several Energy con-

sumption,
reliablity, mem-
ory usage, cpu
load

Maximizing suc-
cessful task ex-
ecutions by all
nodes

Combinatorial op-
timization method
by splitting the
dataset with ex-
pected accuracy,
called CoRoL

The method only
works for offload-
ing machine learn-
ing tasks.

It does not iden-
tify when a task
should be offloaded
to other nodes.

Simulation

[23]
2022 DynamicNo No Several Time delay,

competition
rate, communi-
cation time

Minimizing the
competition
rate and over
time the maxi-
mum delay, the
winners, and
theoutputs are
updated using
communication
links.

Recursive opti-
mization problem
by time, with fewer
robots shut down
at each time step

The value of k is
fixed and should
be strictly decreas-
ing by time. It
is assumed that
there is only one
task and all the
robots compete to
complete this task.
In the case where
several identical
robots compete
for the same task
and have the same
winning rate at any
time, there should
be a tie-breaker.

The method does
not work for the
case where there
are several tasks
where the robots
compete for at
least one of them.
Several other fac-
tors such as the
energy consump-
tion of the robots
and the movement
distance of all
robots must also
be minimized.

Simulation

[82]
2023 Static No Yes Several Average exe-

cution time,
communication
time, task du-
plication.

Minimizing the
competition
time of all tasks
by duplicating
task to other
nodes.

Two approaches
are used: A
combinatorial
graph-theoretic
approach based
on the precedence
order of tasks
that recursively
determines which
tasks should be
duplicated and
to which node of
the architecture
the duplicated
task should be
assigned, and the
optimization-based
approach, [22],
with branch-and-
bound solution
that should be
solved for each
node of the archi-
tecture

The time complex-
ity of the method
is polynomial and
takes time to find a
solution.

Task duplication
increases the mem-
ory utilization by
all robots. If some
of the duplicated
tasks are assigned
to the robots,
they decrease the
efficiency of the
robots and increase
their cost.

Simulation

7

Table 7: Papers on task allocation and scheduling in robotic network systems using a reinforcement learning
approach for solution.

PaperYear Static/
Dy-
namic

Load
bal-
anc-
ing

Cloud
In-
fras-
truc-
ture

Number
of
robots

Parameters Main objectives Approach Used Restrictions Problems Type of
Experi-
ments

[24]
2019 DynamicYes No - Task resource

demands, av-
erage task
slowdown

Task scheduling
while learn-
ing to shorten
average task
slowdown and
maintaining
multi-resource
fairness.

Online task
scheduling us-
ing reinforcement
learning

Objectives are the
goal of all load
balancing methods.
Experimental re-
sults show that the
performance of the
method is within
the performances
of random and
greedy.

Reward formula ig-
nores arrival time.
For simulation,
assumed β = 0 con-
tradicting initial
assumption β > 0.
Considering Pois-
son distribution
with the parameter
0.8 means 0.0002
is the probability
of at least 6 tasks
arrives and with 5
CPUs in fog avoids
assigning more
than two tasks to a
CPU.

Simulation

[91]
2019 DynamicYes Yes Several makespan and

balance the
resource usage,
service time

Minimizing ser-
vice time, main-
taining balance
in terms of com-
puting and re-
sources.

Deep reinforement
learning gaining
knowledge from
environment by
adaptive policies

Only a single node
hosts an applica-
tion.

The available ca-
pacity for data
transmission can-
not be assured.

Simulation

[92]
2020 DynamicNo Yes - Response time

and makespan,
resource effi-
ciency

Minimizing the
makespan and
response time
and increasing
resource effi-
ciency

Reinforcement
learning

Size of occupied
buffer and total
task length of
virtual machines
are assumed to be
independent and
the Q-values are
estimated

Q-value function
is not well-defined.
Poor estimation of
the Q-value when
the number of it-
erations is smaller
than the smallest
buffer capacity

Simulation

[25]
2020 DynamicNo Yes - User costs,

tasks deadline,
server’s cost per
unit use

Optimal solu-
tion for dis-
tributing tasks
across servers
minimizing user
cost.

Reinforcement
learning with the
reward function
defined as the
negative average
cost of the users

Infinite solution
space.

The constraints of
the tasks and the
available resources
should be checked.
Experimental re-
sults are compared
with methods that
are not designed to
minimize the user
cost.

Simulation

[93]
2023 DyanamicNo Yes Several Lifetime, speci-

fications, qual-
ity grade, and
reliability and
performance of
robots, total
price and total
completion time
of robots

Maximizing
total service
quality and
minimizing
total service
performance

decentralized
scheduling based
on dueling deep
Q-networks

All robots are able
to perform tasks.

The task assign-
ment index is
linear, more exam-
ples with different
task length are
needed to deter-
mine the statistical
significance of the
proposed method.

Simulation

[95]
2023 DynamicsYes Yes - Dynamics of

the environ-
ment, inter-
correlation
between the
scheduled tasks,
and the trade-
off between
resource utiliza-
tion and load
balancing

maximizing
resource uti-
lization, min-
imizing total
time, and load
balancing

deep reinforcement
learning approach
with maximum
posteriori policy

For the defined
policy to solve the
scheduling prob-
lem, the solution
is not optimized
if the posterior
distributions are
randomly skewed
to the left and
right

Load balancing
minimizes the
makespan (the
total time is mini-
mized)

Simulation
on a
real-
world
data

[96]
2023 DyanamicNo Yes Several Data transmis-

sion, energy
consumption,
environmental
changes

Minimizing
completion time
and energy
consumption

Deep reinforcement
learning approach
with proximal
policy optimization
that considers
traffic volume and
adapts to environ-
mental changes

Data transmission
should occur within
each time frame

Due to vehicle
movement, the
optimal data trans-
mission path may
change in succes-
sive time frames,
resulting in addi-
tional delays in the
transmission of big
data

Simulation
and
real-
world

[90]
2023 DyanamicNo No Several Edge devices,

collaborative
robots, task
completion
rate, commu-
nication delay,
task deadline

Maximizing
task completion
rate

Decentralized
multi-agent
method of deep
reinforcement
learning with
a partially ob-
servable Markov
decision policy
to determine the
assignment of users
to groups of collab-
orative robots and
edge devices given
the task deadline.

Communication
delays between
edge devices and
between users and
edge devices are
negligible

Tasks that should
be completed at
the same time are
assigned to the
same groups of
robots. Additional
optimization is
required for assign-
ing tasks to edge
devices to mini-
mize the additional
communication
delays between
edge devices.

Simulation

8

Table 8: Papers on task allocation and scheduling in robotic network systems using approaches other than
optimization, combinatorial, and reinforcement learning for solution.

PaperYear Static/
Dy-
namic

Load
bal-
anc-
ing

Cloud
In-
fras-
truc-
ture

Number
of
robots

Parameters Main objectives Approach Used Restrictions Problems Type of
Experi-
ments

[105]
2018 DynamicNo Yes - Task time win-

dow, task exe-
cution cost

Maintaining
the deadline
of a task and
minimizing the
total cost

Uses two stages for
task assignment:
classification using
Bayes classifier
and then finding a
match between the
tasks and the most
appropriate virtual
machine. Tasks
are scheduled into
the Idle time slot
of the matching
virtual machine

The method is
greedy and does
not consider task
switching between
virtual machines

The method is
compared only
with min-min and
max-min

Simulation

[97]
2018 DynamicNo No Several Planning, cost

and energy lev-
els

Minimizing the
cost depending
on the energy
level of the
robots

Centralized dy-
namic task al-
location based
on modeling the
problem as a non-
deterministic finite
automaton

No comparison
with the state-of-
the-art methods

Communication
times are not in-
cluded and does
not take advantage
of cloud for further
cost reduction

Simulation

[98]
2018 DynamicPartiallyNo Several Distance, com-

pletion time
Minimizing
makespan
and/or energy
consumption
considering the
latency and
spatial proxim-
ity to tasks

An algorithm
similar to the
branch-and-bound
searches for the
first task assign-
ment by recursively
performs agent as-
signment and task
sequencer

The optimallity of
a solution cannot
be guaranteed as
it depends on the
initial cutoff and
timeout

It is not explained
how to select the
initial cutoff and
timeout

Simulation
and
real-
world

[28]
2019 Dynamic- Yes - Scheduling in

cloud comput-
ing

Review papers
within years
2005-2018 for
scheduling in
cloud comput-
ing

All articles with
the word ”schedul-
ing” in the title or
keyword, published
within 2005-2018,
from scientific
journals including
IEEE, Elsevier,
Springer, and other
international jour-
nals are considered

Reviewed papers
on cloud compunig.

Application of
scheduling method
on robotic net-
works are not
considered.

-

[107]
2019 DynamicNo Yes Several Computation

and storage
Minimize com-
putational time
and storage
space

An architecture
consisting of
robots, fog, cloud,
and dew

Additional layer is
introduced to the
architecture

Missing the de-
scription of con-
straints for assign-
ing tasks to nodes,
the complexity of
the model increases

Real-
world

[99]
2019 DynamicPartiallyNo - Energy con-

sumption, task
classification,
completion
time, time
window con-
straints, task
migration, dy-
namic voltage-
frequency
scaling (DVFS)

Minimizing
energy con-
sumption

Classifying task
as short and long
and allocating
short oness to slow
and long ones to
fast processors
then balancing the
loads.

Task arrival infor-
mation should be
known

Without task
precedence order,
load balancing
and task stealing
contradicting each
other, task stealing
can lead to drop-
ping a task before
its deadline.

Simulation

[106]
2019 DynamicNo Yes - Data trans-

fer, energy
consumption,
resource utiliza-
tion

Minimize en-
ergy consump-
tion for data
transfer

Data transmission
instead of internet
is made through
multiple volunteer
devices

The volunteer de-
vices have limited
energy level

The cost of energy
consumption is
shared among all
volunteers. Load
balancing is re-
quired to avoid
using only some
of the volunteer
devices.

Simulation

[29]
2019 Dynamic- PartiallySeveral Scheduling in

multiagent sys-
tems

Review pa-
pers on task
allocation and
scheduling in
multiagent sys-
tems

Papers that con-
sider multiagent
systems are consid-
ered

Reviewed papers
on multiagent sys-
tems that focus
mainly on task
decomposition
and the degree
of human agent
intervention.

Some areas such as
the use of clouds,
human-robot col-
laboration, and
the use of machine
learning techniques
are not considered.

-

[100]
2020 DynamicNo No Several Distance, cost Minimize the

costs for path
planning

The canonical form
of an infinite word
in a finite state au-
tomata

Finding the canon-
ical form of the in-
finite word is not a
simple task

Canonical forms
are obtained by
random sampling
may generate dif-
ferent prefixes with
the same cost.

Simulation

[26]
2020 DynamicNo Yes Several Task dependen-

cies, average
execution time,
communication
time, com-
munication
instability,
compatibility,
and capability
of robots, fog,
and cloud

Minimizing
execution time,
communication
time and con-
sidering the
capabilities
of processing
units.

Geometrical ap-
proach. Parame-
ters are measured
for all process-
ing units and
translated into a
hypervolume to be
maximized

The numerical val-
ues relating robots
and tasks for a
given parameter is
not simple.

May require dis-
cretization for con-
tinuous parameters
which may reduce
the accuracy

Simulation

9

Table 9: Papers on task allocation and scheduling in robotic network systems using approaches other than
optimization, combinatorial, and reinforcement learning for solution.

PaperYear Static/
Dy-
namic

Load
bal-
anc-
ing

Cloud
In-
fras-
truc-
ture

Number
of
robots

Parameters Main objectives Approach Used Restrictions Problems Type of
Experi-
ments

[103]
2021 DynamicNo No Single Task execution

time, human
task execution
variability, job
quality of the
human

Minimizing
the nominal
execution time,
makespan, and
waiting time,
and maximizes
the job quality
metric.

Dynamic schedul-
ing with real-time
human monitoring,
then reschedul-
ing to minimize
makespan and
delay.

Metric estima-
tion is redundant.
Human operator
monitoring should
also be applied
when tasks are
rescheduled.

Obtaining the job
quality metric
is not described
properly. The
dynamic sched-
uler is assumed
to be completely
and correctly de-
termined by the
human agent.
Moving tasks to
higher levels must
maintain the two
orders (levels and
schedule) that
cannot be easily
considered

Real-
world

[14]
2021 DyanamicNo No Single Trust in robots

to perform a
task, predicting
human success
or fail for per-
forming a task,
natural trust,
artificial trust

Produce a value
representing a
human trust
on a robot to
perform a task
or not.

Probabilistic
approach with
updating over time

The natural trust
does not have a nu-
merical value.

The probability
of success is a
fitted sigmoid two
additional positive
parameters not a
probability func-
tion. Number of
used parameters is
large.

Simulation
on a
real-
world
data

[15]
2021 DyanamicYes Yes - Makespan,

task arrival,
deadline, and
completion
time, resource
utilization

Minimizing
makespan and
maximizing
resource utiliza-
tion

Combinatorial op-
timization with a
greedy heuristic for
solution

Tasks with long
deadline can be
assigned to a same
virtual machine.
Optimal load bal-
ancing is only
for similar tasks’
lengths and short
deadlines.

For large number of
tasks the method
has poor perfor-
mance compared
to algorithms with
greedy natures.

Simulation

[16]
2022 DynamicNo Yes Several Energy con-

sumption,
reliablity, mem-
ory usage, cpu
load

Maximizing suc-
cessful task ex-
ecutions by all
nodes

Combinatorial op-
timization method
by splitting the
dataset with ex-
pected accuracy,
called CoRoL

The method only
works for offload-
ing machine learn-
ing tasks.

It does not iden-
tify when a task
should be offloaded
to other nodes.

Simulation

[30]
2022 - - Yes Several Architectures of

cloud robotics
systems

Review papers
on creating a
cloud robotics
system

Papers that con-
sider cloud robotics
are examined

Review papers
on cloud robotics
systems that focus
mainly on the
architecture of the
system.

Various areas such
as task allocation
and scheduling
and collaboration
between humans
and robots are not
considered.

-

[13]
2022 DynamicNo No Single idle time of

agents, comple-
tion time of the
job, execution
time of tasks,
precedence or-
der of tasks,
compatibility of
tasks

Minimizing
the completion
time of the job
by minimizing
both agents’
idle times.

Dynamic schedul-
ing by prioritiz-
ing tasks with
real-time human
monitoring and
then rescheduling
to minimize com-
pletion time and
delay.

Cannot be applied
to a system with
multiple humans
and/or robots.

Tasks may have
time window
constraints that
should be consid-
ered as a factor
in evaluating their
priority value.

Simulation

[108]
2023 DyanamicYes Yes Several Bandwidth,

communication
delay, comple-
tion time

Design of ar-
chitecture with
balanced load
and minimized
communication
delay

Deep neural net-
work, expert expe-
rience and domain
knowledge used to
find the optimal ar-
chitecture based on
the data collected
when the system
deployed

Requires stable
communication
without device
failure. Load bal-
ancing and delay
minimization are
considered sepa-
rately.

Since communi-
cation delays are
random and there
is a possibility of
equipment failure,
and since this
information cannot
be collected during
the deployment
phase, the model
may fail in the long
run.

real-
world

[109]
2023 DyanamicNo Yes - the battery

volume, the
daily energy
requirement of
the device to
keep it running,
the prediction
of the collected
energy in the
future, the
energy con-
sumption when
sending and
receiving data,
the computing
frequency of
the device,
the number
of tasks, the
number of in-
structions of
the tasks, their
deadline, their
execution time

Maximizing the
use of green
energy while
maintaining the
working state
of all devices in
the future days
and minimizing
the completion
time of all
tasks.

Transforming the
problem into an
optimization prob-
lem and solving
it with a genetic
algorithm

The number of
tasks on each day
is fixed and con-
stant and there
is no inaccuracy
in the weather
forecast.

Communication de-
lays and device fail-
ures can lead to
more energy being
consumed than ex-
pected for the cur-
rent day, deplet-
ing the battery and
leaving insufficient
energy for the com-
ing days.

Simulation

[104]
2023 DynamicNo No Several Task require-

ments, user
requirements,
encryption,
matching, secu-
rity

The matching
of users and
tasks is done
by translating
their require-
ments without
revealing the
sensitive infor-
mation

The group-
theoretic approach
is used by trans-
lating the task and
user requirements
into encrypted
integer lists with
the size of a large
prime number p
and then match-
ing is done by
comparing the ho-
momorphic image
of the direct prod-
uct of two groups.

The number of
requirements re-
quests should be
large since p is a
large value and
therefore a large
bandwidth is re-
quired for data
transmission when
users send multiple
specific requests
that can only be
executed by some
of the machines.

Since the defined
groups are cyclic
with the order of
the prime number
p, decoding the
information can
therefore be done
simply by replacing
the feeds with two
unequal elements,
at least one of
which becomes
non-trivial and
generates the en-
tire groups.

Simulations

10

	Introduction
	Related Work
	Categorization
	Optimization
	Without Cloud
	With Cloud

	Combinatorial
	Without Cloud
	With Cloud

	Reinforcement Learning
	Without Cloud
	With Cloud

	Alternative approaches
	Without Cloud
	With Cloud

	Conclusion

