
Modular Neural Network Task Decomposition Via Entropic Clustering

Jorge M. Santos
Instituto Superior de Engenharia do Porto

Instituto de Engenharia Biomédica
Porto, Portugal
jms@isep.ipp.pt

Luı́s A. Alexandre
IT - Networks and Multimedia Group

Covilhã, Portugal
lfbaa@di.ubi.pt

Joaquim Marques de Sá
Instituto de Engenharia Biomédica

Porto, Portugal
jmsa@fe.up.pt

Abstract

The use of monolithic neural networks (such as a multi-
layer perceptron) has some drawbacks: e.g. slow learning,
weight coupling, the black box effect. These can be alle-
viated by the use of a modular neural network. The cre-
ation of a MNN has three steps: task decomposition, mod-
ule creation and decision integration. In this paper we pro-
pose the use of an entropic clustering algorithm as a way
of performing task decomposition. We present experiments
on several real world classification problems that show the
performance of this approach.

1 Introduction

The purpose of this work is to address the issue of using
an entropic clustering algorithm to perform task decompo-
sition in a modular neural network (MNN) approach, as op-
posite to the traditional methods. Task decomposition is one
of the strategies used to simplify the learning process of any
learning system. In neural networks it basically consists of
the partition of the input space in several regions, this way
decomposing the initial problem in different subproblems.
This is done based on the assumption that these regions pos-
sess different characteristics and so they should be learned
by specialized neural networks. By posterior integration of
the learning results, we are able to hopefully achieve better
solutions for the initial problem. Generally, task decompo-
sition can be obtained in three different ways: explicit de-
composition (the task is decomposed by the designer before
training), class decomposition (the decomposition is made
based on the classes of the problem) and automatic decom-
position. When automatic decomposition is used, it can ei-

ther be made during the learning stage or it can be made
before training the modules using an unsupervised or clus-
tering algorithm. We use this last approach performing the
task decomposition with LEGClust: the Layered Entropic
SubGraph Clustering Algorithm [1] that uses an entropic
proximity measure to obtain the clusters.

The paper is organized as follows: the next section de-
scribes a general MNN, section 3 describes the clustering
algorithm (LEGClust) used for task decomposition, sec-
tion 4 presents the experiments and, in the last section, we
present the conclusions.

2 Modular neural network

A modular neural network is an ensemble of learning
machines. The idea behind this kind of learning structure
is the divide-and-conquer paradigm: the problem should be
divided into smaller subproblems that are solved by experts
(modules) and their partial solutions should be integrated to
produce a final solution. (Figure 1).

Ensembles of learning machines proved to give better re-
sults than the single learners that produces them. The proofs
are mainly empirical [2, 3] but there are some theoretical re-
sults [4, 5, 6] that also support this assumption.

To use a MNN, three stages have to be considered:

• The task decomposition, where the problem is divided
into smaller problems, each one to be given to one of
the modules or expert networks. To better understand
the task decomposition process let us take a look at the
artificial data set depicted in Fig.2. This is a 3 class
problem where the input space is clearly divided into 2
regions: one of the regions (upper right) contains sam-
ples from 2 classes (crosses and circles) and the other

Data

Modules

Integration
Output

Figure 1. A modular neural network

contains samples from all 3 classes. Note that there are
two classes with samples belonging to the 2 different
regions. By having a classifier dedicated to each re-
gion we are able to transform this particular problem
into two simpler ones.

Figure 2. The partition of the input space for
a 3 class problem.

• The training phase, where each individual expert
(module) is trained until it learns to solve its particular
subproblem.

• The decision integration. This strategy is used to com-
bine the work of the experts and to produce a final net-
work output. This can be done in several ways: us-
ing a gating network [7], make the modules vote [8]
or through hierarchical integration (which can also use
voting and/or gating networks) [9, 10]. In this paper
we consider the use of a gating network. This network
can be considered as an additional expert that is trained
to recognized the region of the input space where each
of the experts have their region of expertise, defined in
the task decomposition phase.

After finishing the learning process, when a new pattern
to be classified is presented to the network, the individual

experts compute the class it might belong, but the gate net-
work selects only a particular output that is given by the
expert it considers to be ‘competent’ to solve the problem,
taking into account the region of the input space to which
the pattern belongs.

3 Task decomposition

As we mention before, the task decomposition is done
before training the modules, using a clustering algorithm.
Previous works like [11, 12, 13] and [6] already used this
approach. There are several well known algorithms to per-
form clustering, being the most common ones those based
on matrix theory and graph theory. However, it is also
known that this kind of algorithms often have serious dif-
ficulties in identifying real clusters. The algorithms based
on matrix theory build clusters according to some distance
measure producing usually globular clusters and the algo-
rithms based on graph theory, usually divisive algorithms,
present serious difficulties in the process of graph partition-
ing to obtain plausible clusters.

In this paper we propose the use of a clustering algo-
rithm developed by the authors to do the automatic task
decomposition. This algorithm uses an entropic measure
to build a proximity matrix used to construct several sub-
graphs. Based on these subgraphs we hierarchically obtain
the clusters.

3.1 The LEGClust Algorithm

The LEGClust algorithm [1] stands for Layered Entropic
subGraph Clustering algorithm. The basic foundations for
this clustering algorithm are directed, maximally connected,
unweighted subgraphs, built with an entropic measure. Us-
ing this entropic measure, we compute a proximity matrix
and the related layered matrix used to construct subgraphs
for each layer. In each subgraph each edge is the connec-
tion between each element and the corresponding element
of that layer. The clusters are built hierarchically by joining
together, following a set of established rules, the clusters
that correspond to the layer subgraphs.

The main idea behind LEGClust is to make the connec-
tions follow the local structure of the data set. This is ac-
complish by using an entropic measure applied to the dif-
ference vectors between data samples.

Let D = {dij}, i = 1, 2, ..,M , j = 1, 2, ..,M , i �= j, be
the set of difference vectors (connections) associated with
the M samples in a neighborhood of a certain data sample p.
Let H(D, pi) be the entropy associated with connection pi,
the entropy of the set of all connections dij plus connection
pi, such that

H(D, pi) = H({D} ∪ {pi}), i = 1, 2, ..,M (1)

2

Table 1. Pseudo-code for the LEGClust Algo-
rithm.

Compute a dissimilarity matrix using any dissimilarity mea-
sure (to obtain the M nearest neighbors).
Compute the entropic dissimilarity matrix of the M nearest
neighbors.
Compute the layered entropic proximity matrix of the M
nearest neighbors.
Form the elementary clusters using the first layer.
While number-of-clusters > 1 do

Go to next layer (L)
Join clusters using the layer connections in L

End While

This entropy will be our dissimilarity measure. We will
compute, for each element p, the M possible entropies and
construct an entropic dissimilarity matrix and the corre-
spondent entropic proximity matrix. The elements of the
first column (first layer) of the proximity matrix are those
correspondent to the samples having the smallest entropic
dissimilarity value with each element.

The entropic measure used is the Renyi’s Quadratic En-
tropy (HR2). For a vector x (x ∈ R

m), HR2 can be esti-
mated as

ĤR2(x) = − log

2
4Z +∞

−∞

1

Nhm

NX
i=1

G(
x − xi

h
, I)

!2

dx

3
5

= − log

"
1

N2h2m−1

NX
i=1

NX
j=1

G(
xi − xj

h
, 2I)

#

(2)

where N is the number of data samples, G is a radially
symmetric Gaussian kernel, m is the dimension of x and
h is the bandwidth parameter (also known as smoothing pa-
rameter or kernel size related to the Parzen Window method
for probability density function estimation).

In LEGClust algorithm we use Renyi’s Quadratic En-
tropy because of its simplicity; however one could use other
entropic measures as well.

The pseudo-code for the LEGClust Algorithm is pre-
sented in Table 1

An example of the first layer subgraph obtained using
LEGClust is depicted in Fig.3a. As we can see, these con-
nections follow the local structure of the data set. For the
same data set an example of a clustering solution produced
using LEGClust is depicted in Fig.3b. We can see that clus-
ters with different structures, combined in the same data set,
are easily detected even if they are not well separated.

(a) First layer connections.

(b) Final clustering.

Figure 3. Clustering using LEGClust.

4 Experiments

We have performed a considerable number of experi-
ments with several data sets using modular neural networks
with task decomposition performed by three different clus-
tering algorithms: one using k-means (K-MNN), other us-
ing Spectral Clustering [14] and the last using entropic clus-
tering (EC-MNN). All the neural networks used in the ex-
periments, both the modules and the gates of the MNN,
were MLP’s with one hidden-layer. The topologies of the
MLPs were [a : b : c], where a is the number of features,
b is the number of neurons in the hidden layer and c is the
number of classes treated by each expert and the number of
experts for the gates. The neural networks were trained with
backpropagation algorithm and early stopping. The experi-
ments were made with the holdout method: half the data set
was used for training and the other half for testing. Then the
data sets were used with inverted roles (the original training
set became the test set and the original test set became the
training set). Each module is trained with the input data de-
fined by the clustering algorithm (each module learns with
the data from each cluster). The gate network is trained with
all the data labelled by the clustering algorithm.

Regarding the clustering processes, since none of them
give automatically the number of clusters, these must be
defined by the user. Taking into account the data sets used
in the experiments we only considered the possibilities of 2

3

and 3 clusters. Otherwise, the training set for each module
would have an insufficient number of samples.

For the computation of the Renyi’s Quadratic Entropy
(2), one has to determine the value of the smoothing param-
eter. For this purpose we use a formula adapted from [15]
to the specific characteristics of our entropic dissimilarity
measure, that was proposed in [1]. The optimum value is
given by

hop = 2σ∗
(

4
(m + 2)N

) 1
m+4

(3)

where σ∗ is the mean value of the standard deviations for
each dimension of the vector x. The reason for using a sin-
gle hop for every dimension is related with the way we esti-
mate Renyi’s Entropy.

4.1 The data sets

We used in our experiments several real data sets and
also the artificial one depicted in Fig.2 further designated
as ArtificialF2. The real data sets are all publicly avail-
able. The Breast Tissue and the CTG data sets can be found
in [16], Diabetes and Sonar in [17], 2VowelsPB in [7] and
Olive in [18].

Table 2 contains a summary of the characteristics of
these data sets. It shows the number of data samples, num-
ber of features and the number of classes for each data set.

Table 2. The data sets used in the experi-
ments.

Data set # samples # features # classes

ArtificialF2 222 2 3
Breast Tissue 106 9 6

CTG 2126 22 10
Diabetes 768 8 2

Olive 572 8 9
2VowelsPB 608 2 2

Sonar 208 60 2

4.2 Results

In Table 3 we present the parameters of each modular
neural network for the results presented in Table 4. For each
type of MNN we show the number of experts and, for each
of them, we present the number of hidden neurons and the
number of output neurons. The number of output neurons
is defined by the number of classes in each cluster. The
presented structures are corresponding to the best results in
a large number of experiments with different combinations
in the number of neurons in each module and in the gate.

Table 4. Errors and standard deviations for
the performed experiments with MNN.

Data set K-MNN EC-MNN S-MNN

ArtificialF2 16.40 (2.40) 14.70 (3.22) 15.32 (3.55)
Breast Tissue 58.95 (7.54) 32.79 (3.72) 33.53 (4.47)

CTG 22.90 (0.86) 20.67 (2.38) 23.91 (2.91)
Diabetes 24.45 (1.45) 23.89 (1.64) 23.96 (1.76)

Olive 49.11 (2.89) 4.74 (0.89) 5.20 (1.11)
2VowelsPB 7.23 (1.17) 7.25 (0.80) 7.28 (0.95)

Sonar 16.14 (3.43) 18.57 (3.40) 23.69 (4.57)

The results in Tables 4 and 5 are the average and standard
deviations for 20 repetitions of each experiment.

4.3 Discussion

We must start by reminding that the MNN approach,
with its associated task decomposition, will only be effec-
tive, giving better results than single neural networks, if
the input space possesses some divisive proprieties, if dif-
ferent regions of the input space have different proprieties.
This is the main reason why we just focus on the compar-
ison between three different modular neural network task
decomposition approaches and not the comparison with
single neural networks. Just for information purpose we
present in Table 5 the errors obtained using single neural
networks(MLP’s with one hidden layer. The number of neu-
rons in the hidden layer is shown in column Nh). We can
see that, there are data sets where we have a considerable
reduction in the final error and others, instead, that present
higher classification errors when compared with the MNN
approaches.

So, what we want to compare in the performed experi-
ments is the suitability of the entropic clustering to perform

Table 5. Errors and standard deviations for
the performed experiments with single neu-
ral networks (SNN).

Data set SNN Nh

ArtificialF2 19.56 (3.95) 20
Breast Tissue 32.75 (3.26) 22

CTG 15.70 (0.60) 20
Diabetes 23.90 (1.69) 15

Olive 5.45 (0.62) 15
2VowelsPB 7.51 (0.37) 6

Sonar 21.90 (2.80) 14

4

Table 3. Structure of the modular neural networks used in the experiments corresponding to the
results in Table 4.

Data set K-MNN EC-MNN S-MNN

ArtificialF2 [2:18:3][2:18:2][2:18:2] [2:20:3][2:12:2][2:14:2] [2:18:3][2:18:2][2:16:2]

Breast Tissue [9:10:2][9:12:2][9:12:2] [9:12:2][9:12:2][9:3:2] [9:4:2][9:14:2][9:6:2]

CTG [22:22:10][22:18:9][22:18:9][22:26:3] [22:20:6][22:18:2][22:26:2][22:26:3] [22:18:10][22:22:10][22:22:10][22:22:3]

Diabetes [8:10:2][8:12:2][8:10:2][8:12:3] [8:14:2][8:18:2][8:12:2][8:16:3] [8:18:2][8:12:2][8:10:3]

Olive [8:6:6][8:12:4][8:12:8][8:12:3] [8:10:4][8:4:3][8:12:2][8:8:3] [8:12:4][8:12:4][8:4:3][8:6:3]

2VowelsPB [2:6:2][2:6:2][2:2:2] [2:4:2][2:5:2][2:2:2] [2:5:2][2:5:2][2:2:2]

Sonar [60:12:2][60:12:2][60:14:2] [60:12:2][60:12:2][60:12:2] [60:10:2][60:16:2][60:16:2]

task decomposition when compared with other methods,
namely the k-means and spectral clusterings. To achieve
that comparison we have two choices: use, for each data set,
the same topology for the different kind of MNN’s or, for
each data set, try to find the best topology for each MNN.
We think that the second hypothesis is the most reasonable
because one should expect that the input regions obtained
by the different task decomposition processes must have
different proprieties and thus should be treated by different
kinds of neural networks.

We can see that the average errors in almost every per-
formed experiments were smaller for the EC-MNN than for
the K-MNN and S-MNN. In some cases the differences in
the performances are very substantial, specially when com-
paring EC-MNN and K-MNN, in the Breast Tissue and
Olive data sets. The 2VowelsPB is a data set with 2 well
separated globular clusters (one containing class 1 and 2
and the other classes 3 and 4); that is the reason for the
equal results for the three different MNN’s.

We used the Wilcoxon or ranksum non-parametric test
to check the statistic significance of the differences be-
tween the similar results. The significance level used was
α = 0.05. The null hypothesis (medians are equal) can not
be rejected for data set Diabetes between EC-MNN and K-
MNN and for data sets Breast Tissue, Diabetes, ArtificialF2,
and Olive between EC-MNN and S-MNN. Despite the re-
sults of the statistic tests the means and standard deviations
of the performed experiments are smaller for the EC-MNN.

5 Conclusion

This paper introduced the EC-MNN (Entropic Cluster-
ing Task Decomposition for Modular Neural Networks).
We used the LEGClust algorithm to choose the clusters in
the task decomposition stage.

We tested the proposed approach in one artificial and six
real world problems and compared the results with the K-
MNN (k-means clustering) and the S-MNN (Spectral clus-
tering) task decompositions.

It was shown empirically that there are several data sets
that can benefit from the EC-MNN approach and that (gen-
erally) EC-MNN will yield better results (smaller classifi-
cation error) than K-MNN and S-MNN.

Our experiments supported the idea that a MNN benefits
from an entropic clustering task decomposition stage.

6 Acknowledgments

This work was supported by the Portuguese
Fundação para a Ciência e Tecnologia (project
POSC/EIA/56918/2004).

References

[1] Jorge M. Santos, Joaquim Marques de Sá, and Luis A.
Alexandre. LEGClust - a clustering algorithm based
on layered entropic subgraphs. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2005. sub-
mitted.

[2] Eric Bauer and Ron Kohavi. An empirical comparison
of voting classification algorithms: Bagging, boost-
ing, and variants. Machine Learning, 36(1-2):105–
139, 1999.

[3] Thomas G. Dietterich. An experimental comparison
of three methods for constructing ensembles of de-
cision trees: Bagging, boosting, and randomization.
Machine Learning, 40(2):139–157, 2000.

[4] Josef Kittler, Mohamad Hatef, Robert P. W. Duin, and
Jiri Matas. On combining classifiers. IEEE Trans.
Pattern Anal. Mach. Intell., 20(3):226–239, 1998.

[5] Erin L. Allwein, Robert E. Schapire, and Yoram
Singer. Reducing multiclass to binary: A unifying ap-
proach for margin classifiers. In Proc. 17th Interna-
tional Conf. on Machine Learning, pages 9–16. Mor-
gan Kaufmann, San Francisco, CA, 2000.

5

[6] L. A. Alexandre, A. C. Campilho, and M. Kamel.
Bounds for the average generalization error of the
mixture of experts neural network. In 5th Interna-
tional Workshop on Statistical Techniques in Pattern
Recognition, LNCS 3138, pages 618–625, 2004.

[7] R. Jacobs, M. Jordan, S. Nowlan, and G. Hinton.
Adaptive mixtures of local experts. Neural Compu-
tation, (3):pp.79–87, 1991.

[8] G. Auda and M. Kamel. Modular neural network clas-
sifiers: A comparative study. Intel. Robotic Systems,
21:117–129, 1998.

[9] M. Jordan and R. Jacobs. Hierarchical mixture of ex-
perts and the EM algorithm. Neural Computation,
(6):181–214, 1994.

[10] R. Jacobs, F. Peng, and M. Tanner. A bayesian ap-
proach to model selection in hierarchical mixtures-of-
experts architectures. Neural Networks, 10(2):231–
241, 1997.

[11] R. Vilalta, M. K. Achari, and C. F. Eick. Class de-
composition via clustering: a new framework for low-
variance classifiers. In Third IEEE International Con-
ference on Data Mining, pages 673–676, 2003.

[12] L. A. Alexandre, A. C. Campilho, and M. Kamel. A
probabilistic model for the cooperative modular neural

network. In Proceedings of the IbPRIA 2003, LNCS
2652, pages 11–18, 2003.

[13] Abdellatif Ennaji, Arnaud Ribert, and Yves
Lecourtier. From data topology to a modular
classifier. International Journal on Document
Analysis and Recognition, 6(1):1–9, 2003.

[14] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss.
On spectral clustering: Analysis and an algorithm. In
Advances in Neural Information Processing Systems,
volume 14, 2001.

[15] A. W. Bowman and A. Azzalini. Applied Smooting
Techniques for Data Analysis. London:Oxford Uni-
versity Press, 1997.

[16] Joaquim Marques de Sá. Applied statistics using
SPSS, STATISTICA and MATLAB. Springer, 2003.

[17] C. Blake, E. Keogh, and C. Merz. UCI repository of
machine learning databases, 1998.

[18] M. Forina and C. Armanino. Eigenvector projection
and simplified non-linear mapping of fatty acid con-
tent of italian olive oils. Ann. Chim. (Rome), 72:127–
155, 1981.

6

