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Resumo

A tarefa de deteção de objetos, tanto em imagem como em vídeo, tem contribuído com in-

úmeros avanços extraordinários no que toca a arquiteturas inovadoras e ao desenvolvimento

de conjuntos de dados cada vez mais completos e de qualidade. Nesse sentido, a maioria

dos modelos consegue adaptar-se a quase qualquer cenário do mundo real – se existirem

dados suficientes –, uma vez que estes modelos são treinados nestes grandes conjuntos de

dados. No entanto, existe um cenário específico – as imagens aéreas –, e que devido às suas

caraterísticas naturais, estes modelos tendem a mostrar um desempenho de menor quali-

dade. Contudo, a diferença de escala do próprio objeto que precisa de ser localizado e iden-

tificado é o principal aspeto que marca a diferença entre os conjuntos de imagens típicas e

os conjuntos de imagens aéreas. Além disso, fatores como o brilho da imagem, a rotação do

objeto, os detalhes do mesmo e as cores de fundo também desempenham um papel crucial

no desempenho do modelo, independentemente da sua arquitetura.

Modelos de aprendizagem profunda tomam decisões com base nas características que con-

seguem extrair do conjunto de imagens de treino. Esta técnica funciona particularmente

bem em cenários padrão, em que as imagens representam o objeto numa escala normal,

onde os detalhes do objeto são precisos e permitem que o modelo o distinga de outros obje-

tos. Contudo, ao considerar um cenário onde a imagem está a ser capturada a 50 metros de

altura, os detalhes do objeto diminuem consideravelmente e, portanto, torna-se mais difícil

para o modelo extrair as melhores caraterísticas significativas que permitem a identificação

e localização do objeto. Atualmente, muitos sistemas de vigilância utilizam câmaras estáti-

cas colocadas em locais pré-definidos; porém, uma abordagemmais apropriada para alguns

cenários poderia passar por utilizar drones de modo a vigiar uma determinada área com um

percurso pré-definido. Mais especificamente, estes tipos de vigilância seriam adequados a

cenários em que não é viável cobrir toda a área com câmaras, tal como florestas.

O primeiro objetivo do presente trabalho passa por reunir um conjunto de dados que se foque

na deteção de pessoas e veículos em florestas. O conjunto de dados foi capturado com um

drone DJI em quatro zonas distintas da Serra da Estrela, e contém gravações que foram

capturadas com diferentes condições meteorológicas – sol e nevoeiro – e durante diferentes

fases do dia – manhã, tarde e ao anoitecer. Além do mais, contempla também quatro tipos

diferentes de terreno, terra, alcatrão, floresta e gravilha, para além de existirem duas classes

de objetos, pessoa e veículo.

Posteriormente, o segundo objetivo contempla a análise precisa do modo como os detetores

de objetos de vídeo e imagem atuam no conjunto de dados anteriormente descrito. A análise

centra-se no desempenho dos modelos em relação a cada classe de objeto e a cada terreno.

Com isto, conseguimos demonstrar uma perspetiva das situações exatas emque os diferentes

tipos demodelos se destacam e quais os que tendem a não ter umdesempenho tão adequado.

Finalmente, com base nos resultados obtidos durante a primeira fase de experiências, o ob-
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jetivo final tem como propósito propor dois métodos em que cada um deles visa resolver um

problema diferente que surgiu da aplicação destes detetores em imagens aéreas. O primeiro

método destaca a utilização de algoritmos de remoção de fundo paramelhorar o desempenho

dos modelos de deteção de objetos em vídeo em determinadas situações com o objetivo de

delimitar áreas específicas nas quais as deteções dos modelos devem ser consideradas váli-

das.

Um dos principais problemas na criação de um conjunto de dados de alta qualidade a partir

do zero é o processo intensivo e moroso de anotação após a recolha dos dados. Com respeito

a isto, o segundo método proposto consiste numa arquitetura auto-supervisionada que tem

como objetivo enfrentar a escassez particular de conjuntos de dados aéreos de alta qualidade.

A ideia principal é analisar a utilidade dos dados não anotados nestes projetos e, assim, evi-

tar o processo demorado e custoso de anotar a totalidade de um conjunto de dados aéreos.

Os resultados relatados mostram que, mesmo com um conjunto de dados parcialmente an-

otado, é possível utilizar os dados não anotados numa arquitetura auto-supervisionada para

melhorar ainda mais o desempenho do modelo.

Palavras-chave

RedeNeuronais Convolucionais, AprendizagemProfunda, DeteçãodeObjetos, ImagensAéreas,

Aprendizagem Auto-Supervisionada, Aprendizagem Supervisionada, Gravações comDrone,

Inteligência Artificial.
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Resumo Alargado

A tarefa de deteção de objetos, tanto em imagem como em vídeo, tem contribuído com in-

úmeros avanços extraordinários no que toca a arquiteturas inovadoras e ao desenvolvimento

de conjuntos de dados cada vez mais completos e de qualidade. Nesse sentido, a maioria

dos modelos consegue adaptar-se a quase qualquer cenário do mundo real – se existirem

dados suficientes –, uma vez que estes modelos são treinados nestes grandes conjuntos de

dados. No entanto, existe um cenário específico – as imagens aéreas –, e que devido às suas

caraterísticas naturais, estes modelos tendem a mostrar um desempenho de menor quali-

dade. Contudo, a diferença de escala do próprio objeto que precisa de ser localizado e iden-

tificado é o principal aspeto que marca a diferença entre os conjuntos de imagens típicas e

os conjuntos de imagens aéreas. Além disso, fatores como o brilho da imagem, a rotação do

objeto, os detalhes domesmo e as cores de fundo tambémdesempenhamumpapel crucial no

desempenho do modelo, independentemente da sua arquitetura. Mesmo por isto, torna-se

crucial desenvolver métodos que tenham em atenção estes fatores ou adquirir arquiteturas

que tenham em consideração os modelos já existentes mas que apliquem métodos de pós-

processamento para melhorar as deteções dos mesmos.

A presente dissertarão tem como objetivo principal analisar o modo como os modelos de de-

teção de objetos, que funcionammoderadamente bem para conjuntos de dados em imagens

típicas, se comportam quando confrontados com um conjunto de dados em imagens aéreas.

Mais especificamente, ao longo de toda a dissertação, pretende-se: i) explorar os conjuntos

de dados já existentes nesta área; ii) desenvolver e anotar um conjunto de dados especifi-

camente para este projeto com todas as suas caraterísticas; iii) realizar experiências com os

modelos de estado da arte no conjunto de dados recolhido e analisar meticulosamente os re-

sultados; iv) com base nos resultados obtidos, propor ummétodo de pós-processamento que

visa à filtração das deteções destes modelos; v) propor uma arquitetura auto-supervisionada

de modo a utilizar os dados não anotados para desenvolver ummodelo supervisionado mais

robusto.

Primeiramente, começámos por procurar e analisar alguns dos conjuntos de dados já exis-

tentes e disponíveis à procura de algum que incluísse as caraterísticas relativas ao problema

tratado nesta dissertação. Após analisarmos vários conjuntos de dados, apercebemos-nos

que nenhum conjunto de dado atualmente disponível, cumpria os requisitos para ser útil ao

desenvolvimento desta dissertação. O fator que é mais comum nestes conjuntos de dados já

existentes, é o facto de a maior parte ser captada através de satélites ou câmaras fixas, o que

os torna pouco útil em aplicações de vigilância. Tendo isto em consideração, o próximo passo

foi analisar as possibilidades de recolher o nosso próprio conjunto de dados. Visto que a pre-

sente dissertação tem um foco muito especifico em zonas florestais e na possível prevenção

de incêndios, marcámos uma reunião com o ex Comandante dos Bombeiros Voluntários da

Covilhã, Fernando Lucas, de modo a estudar todas as opções de recolha de dados. Poste-

riormente, decidimos que o uso de um drone para efetuarmos a recolha dos dados seria a

melhor opção, não só porque se adequa mais à vigia, mas como também torna a recolha de

dados mais dinâmica do que com várias câmaras fixas. Posto isto, procedemos à recolha dos
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dados com recurso a um drone DJI Phantom 4 Pro em diferente zonas da Serra da Estrela.

Teve-se em consideração várias aspetos tais como, condiçõesmeteorológicas – sol e nevoeiro

–, diferentes fases do dia – manhã, tarde e anoitecer –, diferentes terrenos – terra, alcatrão,

floresta e gravilha – e duas classes de objetos – pessoa e veículo. Após a recolha dos dados,

procedemos à anotação dos mesmo com auxílio do CVAT. No processo de anotação, tivemos

de ser muito precisos na delineação das caixas de delimitação dos objetos pois, o facto de

o próprio objeto já ser pequeno torna ainda mais necessário que a zona anotada contenha

apenas os detalhes do objeto e não do fundo.

A segunda fase da presente dissertação passou por explorar o estado da arte relativo à deteção

de objetos, tanto em imagem como em vídeo. O facto de considerarmos os dois tipos de dete-

tores serve para termos uma noção das vantagens de desvantagens de cada um quando tiver-

mos de considerar qual deles utilizar no sistema final. Na fase inicial de desenvolvimento,

começámos por tentar reproduzir vários destes modelos numamáquina local e utilizando os

conjuntos dedados típicos (e.g., COCO e ImageNet-VID). Assimque conseguimos reproduzir

os resultados que os autores dos modelos demonstravam nos seus resultados, procedemos

à adaptação do nosso conjunto de dados para estes formatos, onde COCO é o formato mais

utilizado para detetores em imagens e Imagenet-VID é utilizado para detetores em vídeo.

Após a organização das anotações consoante os critérios de ambos os formatos, procedemos

à realização de várias experiências com diferentes modelos.

Na terceira fase da dissertação, conseguimos analisar as deteções de cadamodelo em termos

de precisão e perceber quais dos modelos se comportam melhor. No entanto, analisar ape-

nas métricas como a precisão ou recall torna-se um pouco ambíguo no que toca a perceber

exatamente onde cada modelo falha e porquê. Posto isto, prosseguimos a desenvolver vários

scripts que não só tinham em consideração a precisão e recall, mas que também consider-

avam a especificidade de cada modelo. Esta métrica dá-nos a informação de como o modelo

se comporta nos cenários em que é suposto não detetar nenhum objeto. Nesse sentido e visto

que o conjunto de dados foi recolhido tendo em consideração vários terrenos, procedemos

à analise dos resultados tendo em consideração as mesmas métricas mas separando as de-

teções por cada terreno. Para conseguirmos esta análise por terreno, tivemos de, primeiro,

treinar um modelo de segmentação semântica que fosse capaz de modelar os diferentes ter-

renos de várias imagens e de cenários diferentes. Procedemos à anotação de 100 imagens

do conjunto de dados tendo em consideração vários cenários possíveis e com uma seleção

de terrenos similar. Posteriormente, com o modelo de segmentação semântica a funcionar

conseguimos atribuir um terreno a cada deteção e assim conseguimos categorizar as métri-

cas que obtivemos previamente por terreno, e consecutivamente, analisar em detalhe onde

os modelos falham e porquê.

Na fase seguinte da dissertação, e tendo em conta os resultados obtido anteriormente, propo-

mos dois métodos distintos que visam a melhorar o desempenho tanto dos detetores em

imagem como em vídeo. Primeiramente, como verificámos que os detetores em vídeo tin-
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ham pior desempenho na terra, e depois de uma análise, concluímos que haviam zonas neste

tipo de terreno que se pareciam com uma pessoa quando vistas de tal altitude. Com isto,

e sabendo que estes casos específicos eram a razão para o modelo estar a ter um desem-

penho menos bom, começamos a explorar opções em que conseguíamos limitar as deteções

do modelo apenas para zonas onde havia movimento. Começamos por experimentar algo-

ritmos de remoção de fundo que são normalmente usados em imagens de câmara estática,

mas como esperado, quando aplicados ao conjunto de dados desta dissertação, os resulta-

dos obtidos não conseguiam modelar corretamente o fundo e os objetos. Procedemos há

análise de outros algoritmos de remoção de fundo que se especializavam principalmente em

câmaras que se estavam a mover, e ao fazermos várias experiências com um dos algoritmos,

apercebemos-nos que este conseguia modelar o fundo e os objetos precisamente da maneira

como precisávamos. Ao conseguirmos modelar o fundo e os objetos em cada frame de teste,

conseguimos delinear regiões que está a acontecer movimento e portanto, o método pro-

posta passa por limitarmos as deteções do modelo apenas a essas regiões. Ao utilizarmos

este método, obtivemos um aumento significativo do desempenho dos modelos de deteção

de objetos em vídeo e conseguimos, quase na totalidade remover os casos em que o detetor

dava a presença de um objeto mas que era simplesmente um buraco ou sombra.

Por fim, o segundo e último método proposto na presente dissertação foca-se especialmente

numa maneira de conseguirmos utilizar os dados não anotados, com base numa arquitetura

auto-supervisionada, de modo a desenvolver um modelo supervisionado mais robusto. De-

pois da recolha dos dados, reparámos que tínhamos um enorme conjunto de dados e que

anotar este mesmo conjunto de dados na sua totalidade seria um trabalho exaustivo. Com

isto, começámos a analisar diferentes maneiras de como podíamos usar os dados que não es-

tavam anotados. Seguindo isto, verificámos que a aprendizagem auto-supervisionada foca-

se especialmente neste conceito, onde temos apenas dados parcialmente anotados. Sendo

assim, explorámos o estado da arte relativo a aprendizagem auto-supervisionada com foco a

deteção de objetos e deparámos-nos com uma arquitetura que fazia uso de dados anotados

em três modalidades – RGB, térmica e profundidade –, e que utilizava dados não anotados

na modalidade de som. Com base nesta arquitetura, considerámos em modificar a mesma

mas de maneira a que servi-se o nosso problema, onde apenas teríamos uma modalidades,

RGB, para o teacher e para o student. Seguindo este conceito, adaptámos a arquitetura para

este modo e procedemos à realização de várias experiências com diferentes ratios de dados

anotados e de dados não anotados. No final das experiências, conseguimos demonstrar que,

de facto, a partir de um certo ratio de dados, é preferível não anotarmos o conjunto de dados

na sua totalidade mas ao invés, anotar uma parte de esses dados de uma maneira supervi-

sionada e depois, utilizar os dados não anotados para desenvolver um modelo ainda mais

robusto.
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Abstract

The object detection task, both in images and in videos, has been the source of extraordi-

nary advances with state-of-the-art architectures that can achieve close to perfect precision

on large modern datasets. As a result, since these models are trained on large-scale datasets,

most of them can adapt to almost any other real-world scenario if given enough data. Nev-

ertheless, there is a specific scenario, aerial images, in which these models tend to perform

worse due to their natural characteristics. The main problem differentiating typical object

detection datasets from aerial object detection datasets is the object’s scale that needs to be

located and identified. Moreover, factors such as the image’s brightness, object rotation and

details, and background colours also play a crucial role in the model’s performance, no mat-

ter its architecture.

Deep learning models make decisions based on the features they can extract from the train-

ing data. This technique works particularly well in standard scenarios, where images portray

the object at a standard scale in which the object’s details are precise and allow the model to

distinguish it from the other objects and background. However, when considering a scenario

where the image is being captured from50meters above, the object’s details diminish consid-

erably and, thus, logically, making it harder for deep learning models to extract meaningful

features that will allow for the identification and localization of the said object. Nowadays,

many surveillance systems use static cameras placed in pre-defined places; however, a more

appropriate approach for some scenarios would be using drones to surveil a particular area

with a specific route. More specifically, these types of surveillance would be adequate for sce-

narioswhere it is not feasible to cover thewhole areawith static cameras, such aswild forests.

The first objective of this dissertation is to gather a dataset that focuses on detecting people

and vehicles in wild-forest scenarios. The dataset was captured using a DJI drone in four

distinct zones of Serra da Estrela. It contains instances captured under different weather

conditions – sunny and foggy – and during different parts of the day – morning, afternoon

and evening. In addition, it also includes four different types of terrain, earth, tar, forest, and

gravel, and there are two classes of objects, person and vehicle.

Later on, the second objective of this dissertation aims to precisely analyze how state-of-

the-art single-frame-based and video object detectors perform in the previously described

dataset. The analysis focuses on themodels’ performance related to each object class in every

terrain. Given this, we can demonstrate the exact situations in which the different models

stand out and which ones tend to perform the worse.

Finally, we propose two methods based on the results obtained during the first phase of ex-

periments, where each aims to solve a different problem that emerged from applying state-

of-the-art models to aerial images. The first method aims to improve the performance of the

video object detector models in certain situations by using background removal algorithms

to delineate specific areas in which the detectors’ predictions are considered valid.

One of the main problems with creating a high-quality dataset from scratch is the intensive
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and time-consuming annotation process after gathering the data. Regarding this, the second

method we propose consists of a self-supervised architecture that aims to tackle the partic-

ular scarcity of high-quality aerial datasets. The main idea is to analyze the usefulness of

unlabelled data in these problems and thus, avoid the immense time-consuming process of

labelling the entirety of a full-scale aerial dataset. The reported results show that even with

only a partially labelled dataset, it is possible to use the unlabelled data in a self-supervised

matter to improve the model’s performance further.

Keywords

ConvolutionalNeuralNetworks, DeepLearning, ObjectDetection, Aerial Images, Self-Supervised

Learning, Supervised-Learning, Drone Recordings, Artificial Intelligence.
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Chapter 1

Introduction

Computer vision is, nowadays, one of the essential sub-fields of machine learning due to

its importance in modern-day applications (e.g., autonomous vehicles, health, security, and

surveillance systems). These applications are assembled based on various computer vision

tasks such as image classification, object detection, and image segmentation. With this being

said, it is also a highly dependent field on data quality, meaning that tons of resources must

be invested into data collection and labelling tasks to develop new techniques that achieve

great results.

Even though many advances in this field have been made, a few topics still need further

investigation and improvement; one of those topics is object detection in aerial data. On the

one hand, object detection in typical images has made significant progress, and the methods

developed can achieve impressive results. However, there are few large-scale datasets for

aerial data, and the problems’ natural obstacles are slowing down the advancements in this

field. In order to obtain large-scale datasets, there is the need tomake significant investments

in terms of money and time. Due to this, it is crucial to design methods that perform well

on these tasks but do not require an immense amount of annotated data that is sometimes

impossible to acquire.

1.1 Problem Statement

The object detection task involves identifying and locating an object in images and videos.

There are twomain techniques to perform this task in computer vision: machine learning and

deep learning-based approaches. The first group of techniques uses more statistical meth-

ods (e.g., edge detection and pixel values histograms) to define a region of pixels where an

object may be located considering those hand-crafted features. On the other hand, the latter

assigns the responsibility of feature extraction to Convolutional Neural Network (CNN)s. In

these networks, if provided with enough data, they can extract the most meaningful features

for a given problem. Due to this, most state-of-the-art object detection methods use a CNN

as the backbone to extract features from images. Nonetheless, every convolutional network

is only as good as the input data.

Object detection has been around for a while, and many state-of-the-art techniques have

achieved impressive results on the most known large-scale datasets. However, these tech-

niques tend to perform worse when applied to aerial image problems. In aerial images, the

objects are on a much smaller scale, thus, making it harder for the network to find meaning-

ful features to identify that particular object. Note that if the camera is straight in front of a
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person, many details can be taken into account (e.g., clothing, face details, colour, and many

more). However, considering an image from a person from 50 meters above, the quantity

and quality of the details that characterize that object diminish immensely and thus, making

it harder for the network to find the best features. Further, this will be thoroughly analyzed

and discussed, illustrating how this lack of detail in objects impacts the performance of state-

of-the-art methods.

1.2 Motivation and Objectives

With more and more resources being invested into computer vision and more techniques

being proposed every day, it is essential to start applying these in systems that help surveil-

lance on more restricted natural areas and avoid any disasters from criminal activities. The

primary motivation for this work was developing a system capable of performing surveil-

lance with a drone in wild areas such as forests. This surveillance would be performed in

interdicted areas for people and vehicles, especially in the summer.

The initial goal of this work is to provide a comparative analysis between state-of-the-art

video object detectors and state-of-the-art single-frame-based methods. Thoroughly ana-

lyze how they perform on this project’s dataset, not only in precision but also on how they

perform in different terrains. Additionally, after analyzing the scenarios in which thesemod-

els perform worst, we aim to solve these problems with post-processing methods that can

tackle the problem’s nature difficulty. Furthermore, given how costly and complicated the

process of collecting and labelling a large-scale dataset of aerial images and videos is, this

work also provides a comparative overview of supervised and self-supervised learning meth-

ods in terms of the model’s precision and the dataset’s size. With these experiments, we aim

to prove that, instead of labelling the entirety of the dataset, we can partially label it and then

use the rest of the unlabeled data to create a more robust method through self-supervised

learning methods.

1.3 Main Contributions

As the first contribution of this work, we present a new dataset explicitly gathered for object

detection in data taken from aerial devices. Moreover, unlike any of the existing datasets,

this dataset focuses mainly on wild-forest scenarios and the data is gathered using a drone.

As described in chapter 3, the dataset provides a wide range of scenarios from different zones

and terrains, with two classes: people and vehicles.

For the second contribution, we thoroughly analyze how the different state-of-the-art object

detection methods perform in aerial data, identifying the specific scenarios in which they

perform better or worse.

After specifically analyzing eachmethod’s pros and cons so far as their performances’ in each

specific terrain, this work’s third contribution is using post-processing methods to improve

the models’ performances in these difficult situations. Moreover, as proven in subsection

4.2.4, we significantly improved the models’ performances using this proposed method.
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Last but not least, the fourth contribution of this work is based on the self-supervised archi-

tecture proposed in section 4.3, which has proven that it can use unlabeled data to improve

the supervised model’s performance further. This method can be incredibly fitting in sce-

narios where the amount of unlabeled data is considerably more than the labelled data, thus

avoiding allocating even more resources to label the entire dataset.

1.4 Document Organisation

The organization of this document is divided into the following chapters:

• Chapter 1 – Introduction – provides an overview of the problem statement. It also

describes the main motivations and objectives for this work, along with the organiza-

tion of the present document.

• Chapter 2–ObjectDetection: RelatedWork–presents an analysis of state-of-the-

art methods for object detection, both single-frame-based and video. It also depicts an

overview of the state of aerial image datasets and the methods developed specifically

for these scenarios. Furthermore, it summarizes the methods and techniques used in

semantic segmentation. This chapter also provides a broad overview of state-of-the-art

self-supervised techniques and in which scenarios they are useful. Finally, this chap-

ter also illustrates the different background subtraction algorithms and the types of

scenarios for which they were designed.

• Chapter 3 – Serra Dataset – illustrates the state-of-the-art datasets in the aerial im-

age field and explains why these datasets were not a good fit for this project. Further-

more, a contextualization is provided for the dataset, along with its specifications and

statistics. Finally, this chapter also describes the dataset’s second iteration, including

the amount of data gathered and its purpose.

• Chapter 4 – Experiments and Discussion – primarily explains the different met-

rics used to evaluate the different object detection models. Afterwards, this chapter

describes the experiments made for the supervised methods, thoroughly analyzes the

result, and posteriorly explains the experiments performed using the background sub-

traction algorithms. After that, this chapter illustrates the experiments performed us-

ing the self-supervised method, and its results are analyzed and used to make conclu-

sions about the proposed method.

• Chapter 5 – Conclusions and Further Work – concludes the document with the

most relevant points taken from the work’s development and defines the main aspects

in which it can be further improved.
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Chapter 2

Object Detection: RelatedWork

This chapter reviews state-of-the-art techniques and methods related to object detection,

describing the advantages and disadvantages of each one. Section 2.1 presents a brief in-

troduction to deep learning, underlining its main concepts and single-frame state-of-the-art

object detection architectures. Afterwards, section 2.2 outlines themain differences between

regular and aerial object detection. Subsequently, section 2.5 describes another approach to

object detection, self-supervised learning, stating its pros and cons, the principal state-of-

the-art methods employed, and their benefits to the problem. Finally, section 2.7 briefly

summarizes the major points of the previous sections, emphasizing the most relevant con-

clusions and aspects related to object detection in aerial data.

2.1 Deep Learning

Deep learning is a branch of machine learning that uses deep neural networks inspired by

how the human brain works. These networks can achieve exceptional results in many prob-

lems and are applied to different types of problems (i.e., text, vision, speech). However, note

that these models are data devour, which means they need an immense amount of data to

train and achieve great results. If the amount of data is small, then lower complexity meth-

ods are a better alternative to these deep neural networks (e.g., SVMs and Naive Bayes).

The first artificial neural networks were proposed as a computational model for neural net-

works byWarrenMcCullough andWalter Pitts, two researchers from theUniversity of Chicago,

in 1943 [22]. These networks could receive an input, calculate the weighted sum, and re-

turn a binary output based on a certain threshold. A neural network consists of layers of

these perceptrons interconnected to each other. The field of artificial intelligence stood still

for about 12 years, where no institutions, large or small, would accept any projects that in-

volved neural networks. The field started to come back to life in 1985 with the re-discovery of

backpropagation which made the task of ”learning” much faster than the previous methods.

Backpropagation is considered the workhorse of learning in neural networks [23] due to its

significant importance in the function of every single neural network.

Afterwards, a significant advance in this field happened in 1980 by Dr Kunihiko Fukushima,

which proposed the Neocognitron [24]. It was an artificial neural network with simple and

complex cells. The core idea was that simple cells could detect simpler patterns of an object,

and complex cells could detect more complex patterns. Even though this was an outstanding

advancement in the field, it was only in 1998 that Y. Lecun, L. Bottou, Y. Bengio, and P.

Haffner, in their paper [1], implemented the first convolutional neural network, LeNet, which
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architecture can be seen in figure 2.1. The LeNet network was trained on theMNIST dataset,

which consists of hand-written digits and characters, having 60 thousand images for training

and 10 thousand images for testing.

Figure 2.1: LeNet architecture, taken from [1].

Following the previous advancements, CNNs just kept increasing in complexity and were

trained with larger and larger datasets. Another significant advance occurred in 2012, when

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton proposed AlexNet. This network

consisted of a deep convolutional neural network that was trained using a GPU and achieved

an error rate of 15.3%; after this, the use of GPUs to train CNNs became the standard.

2.1.1 Region-based Convolutional Neural Network

After the appearance ofmore complex convolutional networks that could find themostmean-

ingful features, therewas no need anymore to performmanual hand-crafted features for each

image in the task of object detection. Afterwards, many proposed architectures used convo-

lutional networks as backbones. The region-based networks will be discussed in more detail

in this section, given that most methods for video object recognition use them.

There are multiple versions of the Region-based Convolutional Neural Network (R-CNN)

architecture; each one tries to improve the previous one mainly in terms of computational

efficiency. The R-CNN family consists of the following architectures:

• R-CNN;

• Fast R-CNN;

• Faster R-CNN;

The most prevalent version – Faster R-CNN – was proposed in 2015. The architectures

in this family have four main components: aRegion Proposal Algorithm (RPA), which

generates the possible locations of an object in the image, bounding boxes; then, there is

the CNN backbone, which extracts features from the image; afterward, there is a classifica-

tion layer which classifies the image and, finally, there is also a regression layer to adjust the

parameters of the bounding box to fit the object.

Note the description of the following terms:

• Proposed Region – is a region that has a probability of containing an object;
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• Anchor Boxes – are a predefined set of bounding boxes that are used in the Regional

Proposed Network;

• Regional Proposal Network – iterates through the previously mentioned anchor boxes

in different image locations and calculates the IoU. Based on its results, the RPN clas-

sifies each image region as either background, meaning that there is no object, or as

foreground, identifying that an object is indeed present in that region.

The first proposed architecture, R-CNN, starts by generating region proposals using edge

boxes. Moreover, the CNN runs for each of the proposed regions, which can be costly given

that there can be around 2000 proposed regions. Each of these proposed regions’ bounding

boxes is adjusted with a SVM model, as shown in figure 2.2. Due to this, this architecture is

considered the slowest model of the family.

Figure 2.2: R-CNN architecture, taken from [2].

The subsequent architecture that followed was, Fast R-CNN, shown in figure 2.3, also uses

the EdgeBoxes algorithm; however, the underline is in the CNN application. Thismodel uses

the CNNonce on thewhole image and only adjusts the proposed regions to fit the object. This

approach is around 25 times faster than the original R-CNN.

Figure 2.3: Fast R-CNN architecture, taken from [2].
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Lastly, the architecture Faster Faster-R-CNNmakes use of aRegionProposalNetwork (RPN)

which is used to generate the region proposals instead of having to use an external algorithm

such as EdgeBoxes [25], as illustrated in figure 2.4.

Figure 2.4: Faster-R-CNN architecture, taken from [3].

The output of this RPN is given to a Region of Interest pooling, which will be responsible for

reducing the size of these maps to a fixed size; this is since the anchor boxes have different

sizes, and so the feature maps come in more than one size. Finally, these features maps, al-

ready flattened, are then given as input for both the regressor, which refines the bounding

boxes and the classifier, which classifies the image as an object or background. This archi-

tecture is around 250 times faster than the original architecture and 100 times faster than

the Fast-RCNN.

2.1.2 EfficientNet and EfficientDet

Most state-of-the-art object detectors correlate accuracy and computational resources,mean-

ing that models sacrifice part of their accuracy if they are not very complex. This is not a

viable long-term solution since, in modern applications, these models must run on devices

that sometimes do not have such advanced hardware. Thus, most of the systems that involve

CNNs are first developed with a fixed budget and then are improved later if needed. To avoid

this correlation between accuracy and computational resources, in 2019,EfficientNet [4] was

proposed with the intent to scale these networks. Which was done by balancing all the net-

work’s dimensions (i.e., width, depth, resolution) which was done by scaling each one with a

fixed ratio; the following figure, 2.5, illustrates the proposed scaling methods.
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Figure 2.5: EfficientNet scaling methods, where (a) is the baseline model, (b),(c), and (d) only focus on scaling
one dimension, and (e) is the proposed method for uniformly scaling all three dimensions with a fixed ratio.

Image taken from [4].

The core idea is that scaling each of these dimensions provides a significant advantage:

• Depth – by increasing the depth of a network, we are increasing the number of con-

volutional layers and thus, allowing the model to learn more complex features.

• Width – by scaling the width of the network, it can extract more specific features.

• Resolution– by scaling the input resolution, we are givingmore detail to the network,

which allows improves the model to find more specific patterns (e.g., smaller objects).

Even though scaling each dimension has been proven to improve the accuracy, these gains di-

minish in largermodels. This is not the casewhen scaling the three dimensions together since

it is much more beneficial for the model [4]. This method would then become the base for

another proposed method, EfficientDet [6] which, by itself, is also a foundation for another

architecture that will be discussed further in 2.5. The main difference between EfficientNet

and EfficientDet is that the latter has the addition of a Bi-directional Feature Pyramid Net-

work.

Feature Pyramid Networks were first proposed in 2016 by Tsung Yi Lin proposed in [5]. It

provided amore efficient alternative to the previously used feature pyramids. The idea is that

to detect objects at different scale levels, we must obtain the image’s feature maps at those

scales. Primarily, this technique would extract each image’s feature maps individually for

each image scale; however, it is a very costly process in terms of memory and a highly time-

consuming process. FPNs propose a pyramid of featuremaps in a top-down architecture that

aims to obtain high-level semantic features for each different scale. The idea is that, since

object detectors only use featuremaps from the highest layers, given that those have themost

semantic value, it is also crucial to consider those bottom layers for specific scenarios (i.e.,

as previously mentioned, for tiny objects’ detection).

9



Object Detection in Data Acquired From Aerial Devices

Figure 2.6: Pyramid of Images. Taken from [5].
Figure 2.7: Pyramid of Feature Maps. Taken from

[5].

Other approaches, such as [26], propose an additional bottom-up pathway in the network’s

architecture that aims to find the best feature network topology with a neural architecture.

Furthermore, and as already stated previously in this section, the EfficientDet uses another

type of FPN, the Bi-FPN. The previous networks are limited by either having only one path-

way and thus, only having one information flow. This is addressed in other proposals by

adding cross-scale connections, but these require heavy computation resources. On the other

hand, Bi-FPN proposes a set of optimizations for this type of cross-scale connection, such as

only maintaining edges that possess more than one input. Then, the network considers each

path (i.e., top-bottom and bottom-top pathways) as one feature network layer [6]. Consider

the following figure, 2.8 that represents the EfficientDet architecture.

Figure 2.8: Proposed EfficientDet architecture, taken from [6].

As illustrated in the previous figure, EfficientDet proposes an architecture where the back-

bone is an EfficientNet pre-trained on the ImageNet dataset. Afterwards, the last chosen

features (P3, P4, P5, P6, P7) are then given as input to the Bi-FPN which is responsible for

aggregating these features bidirectionally; finally, after the feature’s fusion, these are fed to

a class-box network to perform object class classification and box regression, respectively.
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2.2 Object Detection in Aerial Data

The main difference between standard images and aerial images is the scale. In aerial im-

ages, considering a ”bird’s view”, the objects are much smaller than usual, making the object

to detect smaller and, thus, harder to detect. Additionally, objects have more orientation

changes in many aerial images, increasing the problem’s complexity even further. State-of-

the-art methods for object detection are based on finding the best features to characterize an

object and then performing classification and detection based on those features. However,

if the object is tiny, then the number of features that can be analyzed and learned is much

small, making it harder for these models to find suitable features to detect those objects.

Given these technique difficulties, a well-labelled and large dataset is a must when training

anymodel to perform this task. In terms of object detection, there are alreadymany relevant

datasets such as PascalVOC [27], COCO [28] and ImageNet [29]. When it comes to aerial

object detection, there are no such datasets.

The main one that is used and mentioned in section 3.1 is the most complete of them. The

same authors that proposed the DOTA [7] dataset also selected a few state-of-the-art object

detection models (i.e., YoloV2 [30], Region-based Fully Convolutional Neural Network (R-

FCN) [31], Faster-R-CNN and SSD [32]) and evaluated them on their dataset, the results

are shown in the following figure, 2.9.

Figure 2.9: State-of-the-art object detection models’ results on the DOTA dataset, taken from [7].

The results shown in the previous table should be anticipated right away. Large objects such

as harbours, planes, swimming pools, and tennis courts obtain a decent average precision,

whereas smaller objects such as ships and vehicles obtain below-average results. This illus-

trates how these state-of-the-art object detectors might perform well for typical computer

vision problems. However, when confronted with aerial images, their performance is highly

affected by the difference in their characteristics.

A point still needs to be addressed regarding aerial image datasets. There are different meth-

ods of obtaining aerial data, yet, the most commonly used is to obtain images from public

satellites. Themain problemwith this method is that there is no control over the actual cam-

era and its characteristics. Even though it is a straightforward and uncomplicated method to
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obtain aerial images, it might not be the best for specific scenarios. Another way of obtain-

ing aerial data is through drones, which are, nowadays, compelling and can possess different

types of cameras (e.g., RGB, sensor, thermal and many more), and we have control over the

height, camera settings and route. Given this, there are also disadvantages when recording

our dataset with drones, such as:

• Low battery life – The Phantom V4 Pro, which was used to record the data used for

this project, can only last for 20 minutes in the air recording;

• Manual flight – There can be danger zones where the drone can crash if not guided

carefully;

• Costly – It is time-consuming, and there is the need to travel to the places where the

recording scenarios must happen.

Furthermore, given the problem tackled in this work, obtaining aerial data in the forest with

drones is a demanding task. There aremany zoneswith high tree density, and the dronemust

be constantly looked after to adapt its height to prevent it from crashing. Another critical

factor is that recording many optimistic scenarios (i.e., cars driving by and people walking,

running, or riding bicycles) requires additional personnel to perform these scenarios since,

most of the time, there is not much activity.

After the release of DOTA, a few object detection methods in aerial images have been de-

veloped that mainly focus on the objects’ rotation. Because a typical CNN does not model

orientation variation, and given that this is a crucial factor in detecting objects in aerial im-

ages, there is the need to develop models that consider rotation. With this being said, the

reDetmodel [8], and CoRR [33] are the main state-of-the-art methods that focus on model-

ing these variations of orientation towards object detection in aerial images. The following

figure 2.10, illustrates the architecture of the method proposed in [8], ReDet: A Rotation-

equivariant Detector for Aerial Object Detection.

Figure 2.10: ReDet architecture, taken from [8].

Note that, as the previous figure shows, these methods possess a network that is specific for

extracting the objects’ rotation features (i.e., rotation-equivariant features) which are then
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fed to a RPN and, subsequently, to a region of interest transformer. The comparison results

of this model with the other state-of-the-art object detectionmodels are shown in figure 2.11.

Figure 2.11: ReDet comparison results, taken from [8].

The significant difference between the results obtained with the ReDet networks and the

results obtained by state-of-the-artmethods is in the smaller objects. While using these state-

of-the-art detectors, objects such as vehicles, helicopters, ships, and container cranes, the

results are not favourable due to the characteristics of the object; however, the results are

significantly better when using a method that considers the objects’ rotation features.

Further, the few aerial image datasets found in search of similar projects will be described

and analyzed based on the number of instances, categories and images.

2.3 Video Object Detection

If obtaining large quality image databases is difficult, video databases become even more

challenging. There are already a few available databases that allow researchers to develop

and evaluate newarchitectures towards video object detection, such as ImageNetVID2015 [34]

andCityscapes [35]. While these two datasets are extensive and have quality data, the variety

of scenarios is still minimal.

CNNs have been showing tremendous results in various tasks. In particular, one technique

mainly serves as the foundation for the feature propagationmethods approached in this sub-

section: a CNN that can perform optical flow estimation. Optical flow estimation has been

the target of different approaches with improved methods since it was proposed by Berthold

K.P.Horn [36]. In contrast, all of these methods’ parameters must be inserted manually.

Other techniques have been proposed that apply machine learning methods to learn optical

flow, both using supervised learning methods ([37]) and also unsupervised methods ( [38]).

A relevant contribution for the following papers is FlowNet [9] which is proposed in two

architectures that are shown in the following figure,2.12.
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Figure 2.12: FlowNetSimple architecture in the top and, FLOWNETCORR shown in the bottom, taken from [9].

The first architecture, FlowNetSimple, is the most basic of the two and consists of stacking

the two input images together and then feeding them through a CNN. This is a relatively sim-

ple approach, but if the network is extensive enough and provided with quality data, it has

been proven to achieve great results. On the other hand, the second architecture, FlowNet-

Corr, initially has two separate streams responsible for extracting meaningful features for

each input image. Later, both the features extracted from each image are combined, passing

through a final CNN, much like the simple architecture.

2.3.1 Deep Feature Flow for Video Recognition

The task of object recognition in images is often performed with the help of deep learning

architectures; however, even though these architectures achieve great results, it is also es-

sential to consider the large number of computational resources they require. This problem

only aggravates when the tasks are performed on video. This is one of the reasons why it is

essential to design new architectures that achieve great results and are also efficient in terms

of computational resources.

Additionally, Paper [11] proposes Deep Feature Flow, a flow-based method that aims to

solve these computational boundaries by taking advantage of the similarity between adjacent

frames. The proposed architecture, illustrated in figure 2.13, consists of having two separate

networks (i.e., two-stream network). The first one is a ResNet-101 which is responsible for

extracting the key-frames feature maps; the second one is a FlowNet [9] which is used to

warp the key-frames feature map with non-key frames.
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Figure 2.13: Deep Feature Flow feature propagation architecture, taken from [10].

There is a significant similarity between adjacent frames in videos, and thus, there is an equal

similarity between each frame’s feature maps. Based on this, the authors propose not to ex-

tract feature maps from every frame but only from those which are distinct and then propa-

gate the features of these key-frame, feature propagation. Note that, after extracting features

maps from the key-frame, these features are then propagated through a flow field to the next

n frames, as shown in figure 2.14.

Figure 2.14: Proposed flow field mechanism, taken from [11].

A crucial factor in this method is deciding which key frames and how long their feature maps

should be propagated. In the paper’s experiments, finding these crucial frames was done

by setting a constant interval of frames in which this feature extraction operation was per-

formed. Thismethodworks for this scenario, but it is highly volatile given that every scenario

is different in terms of frames’ content. In order to further improve this architecture, there

is the need to find amore reliable way to find the best key frames and propagate their feature

until there is a framewhere the information highly shifts. Note that there will be experiments

conducted to evaluate which value to choose between key-frames by analyzing the particular

scenario for this project.
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2.3.2 Flow Guided Feature Aggregation

In videos, many aspects make the task of object detection harder, such as motion blur, video

defocus, part occlusion, and rare poses. In this paper [12], the core idea is to aggregate fea-

ture maps from adjacent frames to maintain crucial information so that the model can easily

detect a given object in more specific scenarios. The following figure, 2.15 illustrates the

different frames’ features warping.

Figure 2.15: Flow Guided Feature Aggregation method proposed, taken from [12].

The previous figure illustrates why, in some scenarios, it is essential to consider the neigh-

bour frames when detecting an object. In the figure’s middle frame, the image is blurred;

thus, the feature maps extracted from it have low activations. An architecture that only con-

siders that frame’s feature maps would almost certainly not detect any object in the frame.

Nevertheless, by considering the frame’s neighbours, which have high activations (left and

right images on the figure), the architecture can detect that there is indeed an object in the

image. The overall architecture of this model is shown in figure 2.16.

Figure 2.16: Flow Guided Feature Aggregation architecture, taken from [12].

These features are extracted using a ResNet-101, also pre-trained on ImageNet; afterwards,

it is calculated the flow estimation between the reference frame and its neighbours by us-
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ing FlowNet, which is called feature warping. Proceeding this process, these sets of feature

maps are then aggregated as a way to combine their information (i.e., different object poses,

lightning variances, and many more variables). Logically, since every neighbour frame pos-

sesses different information levels than the reference frame, they should not have the same

impact when aggregated. The authors propose to feed these features through a sub-network

to assign different weights to the different featuremaps. This is done by using a sub-network

based on cosine normalization to compute these weights; these weights are then used to ag-

gregate the features accordingly to their importance. Following the features’ aggregation,

these are then fed to the detection task network, similarly to the previous model, a R-CNN

which will then perform regression and classification.

2.4 Semantic Segmentation

Image segmentation is a computer vision problem aiming to outline an object’s boundaries

precisely. Instead of finding a region of pixels where the object might be, we want to la-

bel each pixel of an image with its respective class. There are two main sub-fields in image

segmentation: semantic and instance segmentation. The first is only responsible for finding

each pixel’s class. The latter is responsible for classifying each pixel according to its class and

identifying every pixel belonging to a particular instance. On the other hand, when using in-

stance segmentation, it not only classifies and outlines both dogs but also identifies each as

a unique instance of that class, as shown in figure 2.17).

Figure 2.17: Illustration of the different computer vision tasks, taken from [13].

With this being said, and now considering this work’s scenario, wild forests have a few possi-

ble terrains, such as dirt roads, forestation zones, gravel paths (i.e., terrainmainly composed

of rocks), and tar roads, as shown in figure 2.18. The main idea is that by applying instance

segmentation, we can outline these terrains on any dataset image, figure 2.19.
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Figure 2.18: Dataset’s example frame.
Figure 2.19: Terrain segmentation mask for the

example frame.

The terrains segmentation colors is as follows:

• Forest – Green;

• Gravel – Orange;

• Dirt Road – Red;

• Tar Road – Gray.

This type of data is intriguing because when experimenting with different state-of-the-art

methods, thoroughly analyzing the results is crucial tomaking the correct conclusions. Hence,

by segmenting an image and outlining all terrains, we can then use this information to an-

alyze the model’s performance on each one (i.e., conclude if the model performs better on a

specific type of terrain). Before CNNs, image segmentation was done using SVMs, random

forests, and k-means clustering; however, after the appearance of convolutional networks,

methods like U-Net [14] started to surge which main goal was to consider different features

with different levels of maturation.

Olaf Ronneberger proposed theU-NET in 2015, and themain idea is that there are two paths

in the network. These paths are also known as the encoder and the decoder. The first is

used to find the image’s context, and it consists of only convolutional and max-pooling lay-

ers where it will learn the representation of the different classes. On the other hand, the

expansion path is responsible for up-sampling these features back to the original image’s

size; this path uses transposed convolutions. It also has to skip connections so themodel can

consider features with different maturation levels.
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Figure 2.20: Proposed U-NET architecture, taken from [14].

Note that the final output of this network is an image of the same size as the original’s; how-

ever, the depth of the output corresponds to the number of the problem’s classes, and every

pixel has its corresponding class value in that class’s depth.

After this architecture was proposed, many methods were proposed, [39] [40] [41]; how-

ever, given that most of these architectures were proposed around 2015 and 2016, in this

project, a more contemporary state-of-the-art architecture was used, the High Resolution

Network (HR-Net) [15]. It was proposed in 2019 by Ke Sun, and it relies on the fact that high-

resolution solid representations are an essential part of region labelling problems. Thus,

making it crucial that systems canmainhigh-level representations of the original data through-

out the whole network’s flow. The authors found that to maintain these representations by

connecting different convolutions paths with different resolutions, as shown in figure 2.21.

Figure 2.21: Proposed HR-Net architecture, taken from [15].

As the previous figure illustrates, the first feature maps have a high resolution. However,

as the depth of the networks starts to grow, other blocks are created that possess the exact

resolution as the previous block, and more miniature representations are created in parallel.

Every feature map at the end of a block is fully connected to the following block’s feature

maps, also known as multi-resolution convolution. This makes it so that the network keeps

that high-resolution information throughout the process. The final feature maps possess

more semantic value by performing convolutional with these different resolutions.

2.5 Self-Supervised Learning Towards Object Detection

Supervised learning methods require an immense amount of data to achieve good results. It

is challenging to obtain such amounts of data in distinct scenarios, but the task of annotating
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all that data is also an arduous, very costly, and time-consuming process. Self-supervised

learning is a form of unsupervised learning that removes the need for labelled data by giv-

ing the task of learning useful representations for that unlabelled data to the method; this

makes it so that these models can label and categorize the data themselves. The most recent

and promising advances in this field are transformers. For example, BERT [42] is a self-

supervised based transformer applied to Natural Language Processing which is first trained

on unlabelled data and then fine-tuned on a smaller set of labelled data. Self-supervised

learning started to get more attention around 1990 due to its potential applications in Natu-

ral Language Processing problems. There are two main types of methods used in this field:

• Self-training – This method’s core idea was to, primarily, train an initial model with

available labelled data and then, with the help of this previous one, train a secondary

model with unlabelled data [43].

• Structural Learning – In this method, only unlabeled data is used to find simpler

hypothesis spaces by modelling the regularities of this unlabelled data [44].

Afterward, self-supervised learning also started being applied to computer vision and, an ex-

citing technique in this field is generative models (e.g., Generative Adversarial Network).

AGAN is an architecture that combines two neural networks: the generator and the discrimi-

nator, which compete against each other continuously as if they are playing a game, as shown

in figure 2.22. On the one hand, given a random noise, the generator network generates new

synthetic data instances, but that needs to be as real as possible to fool the discriminator. On

the other hand, the discriminator evaluates the image generated and tries to evaluate it as

real or fake. The core idea is that the discriminator can find a correlation between the data

and the corresponding output [45] and the generator reaches a point where it generates im-

ages that are as real as possible. One of these methods’ problems is that they are challenging

to train.

Figure 2.22: Basic GAN architecture, taken from [16].

Another method used in self-supervised learning is contrastive learning, proposed in

2018 by Aaron van den Oord [46]. The main idea behind this method is to identify and learn
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representations by contrasting positive and negative data samples. This is important because

we do not want the model to only identify the objects with characteristics like the ones it was

trained on; it must generalize. We, as humans, learn to identify objects by specific charac-

teristics similar to most of that same object’s type (e.g., identity a car no matter the colour,

shape, or brand), and thus, our power of generalization is perfect. Given this, the model is

learning high-level features that distinguish it from other objects by using contrastive learn-

ing. A state-of-the-art model developed using this technique is A Simple Framework for

Contrastive Learning of Visual Representations [47] proposed by Ting Chen in 2020,

which architecture can be seen in figure 2.23.

Figure 2.23: SimCLR architecture, taken from [17].

As illustrated in the previous figure, the concept is to apply data augmentation first, get the

images’ representation by using an encoder, and, afterwards, maximize the similarity be-

tween these representations of the same image. Themodel’s generalization can improve and

learn the right features to distinguish between objects. Another critical aspect in these net-

works is transfer learning, which consists of using knowledge from a model, that was previ-

ously trained for new tasks and purposes. This is ideal given how much time it takes to train

models with a high complexity from scratch. In ”CNN Features off-the-shelf: an Astound-

ing Baseline for Recognition” [48], it has been proven that the lower layers of a network can

represent the general purpose of a dataset. In contrast, the higher layers focus more on the

specific task of the problem.

Note that transfer learning is fundamental to this field, given that self-supervised learning

techniques improve their performance when the model is more complex [49]. If we can re-

utilize the weights from another big model, then there is no need to spend weeks or maybe

months training another one from scratch. While transfer learning consists of transferring

the weights from onemodel to another, there is also another way of transferring information

between models, knowledge distillation. In this method, we are not looking to transfer the

weights but instead, the representational learning from an extensive network (i.e., teacher

model) to a smaller one (i.e., student model). This is also extremely important given that

there are specific real-world applications where running such large models is not an option

(e.g., mobile phones and embedded devices). This transfer is done by having the teacher

model pre-trained on a large-scale dataset and supervising the student model’s training.

This makes it so that the student network’s task is to obtain the most similar output to the
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teacher’s, as illustrated in figure 2.24.

Figure 2.24: Knowledge distillation method’s architecture, taken from [18].

When we look more at the specific task approached in this project, object detection meth-

ods such as SimCLR andMoCo fail to achieve good results due to being explicitly engineered

to perform object classification problems. A few methods have been proposed ( [50], [51])

that try to use these techniques in a more object detection-oriented approach. Furthermore,

following this project’s interests, the self-supervisedmethod that will be analyzed inmore de-

tail is There is More thanMeets the Eye: Self-SupervisedMulti-Object Detection

and Tracking with Sound by Distilling Multimodal Knowledge [19]. Considering

that humans have an excellent perception of their surroundings, whether night or day, this

brings up a discussion on how we can design systems with the same level of perception. The

main reason for this fantastic perception of humans is that we consider every information

from different sensory modalities in the body. This means that, in a scenario where we do

not see a person coming from behind us, we can still rely on the sound or smell to conclude

that there is a person. Additionally, it is proven that sound attributes that come from objects

contain a prosperous time and domain frequency. This paper [52] and a few others have al-

ready applied methods that focus on leveraging teacher-student learning based on these two

modalities, image and sound. Even though these methods already integrate these different

modalities, there are still a few problems that they have: they only work for strict scenario

settings and single object detection, there is the need for metadata related to the input, and

most of these methods train the teacher only on RGB images, which have many variables

(i.e., weather, brightness, object scales and many more).

Themain innovation in this paper uses three teacher networks, whichwere trainedwith three

different modalities, to train a student network with the sound modality, shown in figure

2.25. The combination of these three modalities is very beneficial to findingmore cues in the

video for more specific scenarios (e.g., if the input video was at night, the RGB modality will

most likely not provide any useful features for the detection task, making it crucial that other

modalities, such as thermal, are also taken into consideration for more useful features).
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Figure 2.25: MM-DistillNet architecture, taken from [19].

Posterior to training the teachers on their specific modalities, these are then used to train

the audio student to map the sounds captured from a microphone to bounding box coordi-

nates. The task of finding complementary cues from the different teachers and, at the same

time, distilling their object detection knowledge to the student is done by applying theMulti-

Teacher Alignment (MTA) loss, which is also a technique proposed by the authors in this

paper and will be discussed further into the method’s explanations.

The primary aspect of the proposed architecture is the teacher’s backbone. The authors chose

EfficientDet-D2 since it was the one that provided the best trade-off between speed and per-

formance. These backbones were trained in different datasets that focused explicitly on their

modalities.

• RGB teacher– trained on theCOCO [28],PASCALVOC [27] and ImageNet [29] dataset.

• Depth teacher – trained on the Argoverse [53] dataset.

• Thermal teacher – trained on the FLIR ADAS [54] dataset.

Note that, as it was explained previously, the EfficientDet is not only responsible for extract-

ing the most meaningful features but also for fusing them. Fusing features is a responsibility

of the bi-directional weighted feature pyramid.

Any system must have a loss function to learn based on its mistakes. This method has two:

Focal Loss and MTA Loss. The first loss is a type of cross-entropy whose goal is to keep the

network focused on learning themore hard examples. Equation 2.1 is relative to the focal loss

where α corresponds to the weight associated with the more complex examples, γ is a hyper-

parameter that controls how much difference in the effort there is between the complex and

simpler examples and, where pt corresponds to the probability of ground-truth class.

Lfocal = α(1− pt)γ ∗ log(pt) (2.1)
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The latter loss, MTA, is used to perform knowledge distillation from the different teachers to

find cues from the intermediate layers of each teacher. This is done by ensuring that specific

inner layers of the student network alignwith the teachers’ same layers. We are not interested

in using audio, sensor, or thermal modalities in this work. Thus, this architecture will be

used only with the RGB modalities further into the document as an attempt to develop an

architecture that can create a new model that performs better than the teacher itself.

2.6 Background Subtraction

The main problem that we expect will occur is that these models will often confuse zones

of the environment that have similar characteristics to a person or vehicle (i.e., holes and

shadows on the terrain). On the one hand, such a problem cannot be easily tackled in the

video object detectors’ training process. On the other hand, in the EfficientDet model, the

different fusion of feature maps considers features of more than one scale of the original

frame, making it crucial to consider more object details in the training process, even if the

object is tiny.

With this being said, the best chance to avoid these miss detections in video object detectors

is to apply post-processing to the model’s outputs to try and discard these outlier detections.

In order to discard any detections, we must first determine an area in which we can consider

good detections. Since models often confuse non-moving objects (i.e.; ground holes) with

moving objects (i.e.; people), the main idea would be to determine in which areas objects

are moving and only consider models’ detections in those areas. Based on this, this section

provides an overview of the different types of background subtraction algorithms and for

which scenarios they work best.

2.6.1 Static-Camera-Based Background Subtraction Algorithms

The task of background subtraction is mostly used in static camera scenarios, and there are

various methods which specialize in this problem, such as [55], [56], [57]. The main idea

behind background subtraction is to model the background of the image or video and then

detect any changes to the foreground. There are multiple methods to perform this task: av-

erage temporal filter, frame difference, and Gaussian filters.

• Temporal Average Filter – consists of calculating the median value for each pixel

in a sequence of training frames, and then for each new frame, each pixel is compared

to the correspondent median value from the training process; if the pixel’s value is in

between a threshold limit, then it is considered as foreground.

• Frame Difference – consists of subtracting the pixel values of two adjacent frames

and analyzing the results. If the pixel’s subtraction value is lower than a predefined

threshold, then the pixel is considered background. On the other hand, if the difference

is higher than the threshold, it is considered foreground, as shown in figure 2.26.
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Figure 2.26: Frame difference method example, taken from [20].

• Mixture of Gaussian Filters [58] – is a probabilistic algorithm using a set of n

predefined Gaussian filters, where each one represents a different cluster. The idea is

that different clusters can represent the background and foreground.

These previously mentioned algorithms are based on statistical estimates calculated in the

background and then compared to new frames. Additionally, in most of these papers, the ex-

periments are performed on scenarios with a fixed camera with always the same background

besides some lightning variations. With this being said, it is essential to note that the sce-

nario being tackled in this thesis consists of a non-static camera (drone), and thus, not only

does the foreground change but so does the background. However, there are already algo-

rithms that are developed towards scenarios with a non-static camera where the background

changes, such as: [59], [60] and [21].

2.6.2 Moving-Camera-Based Background Subtraction Algorithms

The problem of modelling a background on a sequence of images taken from a moving cam-

era is tackled using innovative approaches to the existing methods. In static-camera-based

methods, the primary method for solving this problem consisted of three steps:

1. Align all the frames in a given set;

2. Train a static camera background modelling model using those frames;

3. Inference with unseen frames on them model.

This process works well in scenarios where the sequence of analyzed frames is short. When-

ever this sequence starts to get longer and especially withmore significant and abrupter cam-

era movements, this process starts to show its flaws. The main problem of these algorithms
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developed for static cameras is that they do not maintain any information about the back-

ground and foreground of the previous frame, given the problem’s nature. With this being

said, we focus on one specific method, Moving-camera Background Model via Joint Align-

ment and Partially-overlapping Local Sub-spaces [21]. The method divides the task of back-

ground subtraction into the three following phases:

1. Unsupervised Joint-Alignment – is the first phase of the proposed method con-

sisting of finding a fixed global coordinate system relative to a given set of images. Pri-

marily based on an initial set of frames used for training, this first phase uses the A Cer-

tifiably Correct Algorithm for Synchronization over the Special Euclidean Group [61],

which tries to estimate poses given a few measurements. These transformations are

then refined by using an Spatial Transformer Net [62], as shown in figure 2.27.

Figure 2.27: Primary phase of the JA-POLS method, unsupervised joint alignment. Image taken from [21].

2. Alignment Prediction and Learning Multiple Background Models – is the

second phase, which consists of using the output of the joint-alignment to perform two

different tasks: learn transformation predictions based and learn Partially-overlapping

Local Subspaces, as shown in figure 2.28.

Figure 2.28: Secondary phase of the JA-POLS method, which includes both tasks of learning alignment
predictions and learning multiple background models over partially-overlapping areas. Image taken from [21].

The first task is done by training aGoogleNet [63]model, pre-trained on ImageNet [29]

to find the global representation of a given frame. The second task splits the scene into

different regions and learns different background modellers for those same regions.

3. Testing Phase – is the last phase of the method. Primarily it warps a previously un-

seen frame to the global scene and afterwards to the local subspace (i.e., the different
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scene regions). Finally, we consider both the outputs of the global scene and local re-

gions models and average them to perform background subtraction, as illustrated in

2.29.

Figure 2.29: Final phase of the JA-POLS method, testing phase. Image taken from [21].

There are many methods which also aim to solve the problem of background subtraction on

moving cameras problems such as incPCP-PTI [64], DECOLOR [65], PRPCA [66] and Prac-

ReProCS [67]. The authors of the JA-POLS paper illustrated how their method performed

compared to these other methods. Refer to the following figure, 2.30, which illustrates the

different background/foreground outputs for an observation frame from the different algo-

rithms.

Figure 2.30: Comparison between the different outputs from multiple moving-camera based background
subtraction algorithms, taken from [21].

It is noticeable that while all methods can significantly model the background and fore-

ground, the main difference between them is the environmental noise surrounding the ob-

ject. The JA-POLS method, since it considers the global scene of the frame and its local

region, can perform a much more localized and precise modelling. This is the main differ-

ence between these models. Note that, because of this, the JA-POLS method can only focus

on the object closer to the camera (i.e., the car) instead of also modelling the house in the

back.

2.7 Conclusions

This chapter provides a clear description of the current object detection state-of-the-art re-

lated to both supervised and self-supervised learning. A very descriptive analysis was done

on object detection in aerial images, showcasing the methods that have been developed for
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this particular area even though they are single-frame-based. Moreover, an analysis was per-

formed on state-of-the-art video object detectors based on feature and flow-field propagation

to connect the spatial and temporal aspects of the frame sequence.

Furthermore, this chapter also analyzes the evolution and current state-of-the-art semantic

segmentation architectures, which will then be used to perform this task on the dataset pro-

posed for this project to analyze the detector’s results thoroughly related to every different

terrain.

An overview of the state-of-the-art self-supervised methods is presented in this chapter to

illustrate how these methods operate and when they can be valuable. Additionally, special

attention was given to the architecture mentioned in figure 2.25 since one of the proposed

methods in this work is mainly based on it.

Background subtraction is the last topic approached in this chapter. It provides the details

that differ between static-camera and moving-camera-based algorithms—illustrating how

the different methods work and the specific scenarios in which they should be used.

Every related work presented in this chapter will serve as a foundation to either explain re-

sults obtained in the experiments chapter or serve as a foundation for newly proposed meth-

ods in this work.
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Chapter 3

Serra Dataset

In this chapter, we introduce the dataset collected for this project, explaining the different

ideas andmethodologies for gathering a new dataset. Furthermore, the dataset’s assembling

process is explained to provide an overview of the process, fromdata collection to annotation.

Finally, the last section provides an overview of the dataset’s specifications.

3.1 Related Sets

Researchers have been trying to fine-tune state-of-the-art models trained on datasets with

normal images and adapt them to aerial images in the recent past. However, some factors

still become a step-back when trying to achieve great results, such as:

• First and foremost, the scale variation is immense when comparing standard images to

aerial images, and this proves to be a significant step-backwhen adapting othermodels.

Note that the scale difference is not only in terms of spatial resolution (i.e., object is

extremely small considering the rest of the image) but also in terms of object categories’

scale i.e. in standard images, different objects’ categories also have different scales,

however, in an aerial image, some objects might have the same scale from a top-view).

• Depending on the problem’s scenario, there are variations in the number of objects in

an image. Thismeans that there are scenarioswhere one imagemight have hundreds of

objects and others much less, as shown in figure 3.1, creating an unbalanced frequency

of instances.

• Lastly, an essential factor in these images is the object’s orientation, which can change

drastically based on the camera angle, which is also illustrated in 3.1.

For this field to advance, there is the need for extensive and quality datasets that focus on

aerial images. This way, researchers and developers can build accurate systems trained and

evaluated on a significant amount of data gathered for this problem. Combining a few exam-

ples from these typical massive datasets can improve the system’s generalization. In 2019,

the Dataset for Object Detection in Aerial Images dataset, which consists of 188.282 in-

stances where each one is labelled by scale, orientation, and shape, contains 15 common

object categories [7].
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Figure 3.1: DOTA dataset statistics and examples, taken from [7].

Previous to the DOTA dataset, around eight primary datasets focused on aerial images; how-

ever, these datasets are not very good regarding the number of instances, classes, and images.

These three factors are very low for these eight datasets, as table 3.1 shows. This means that

systems trained with these datasets can not be applied to real-world applications since the

system would not generalize well enough. With this being said, the DOTA dataset provides a

broader range of classes, amuch higher number of images, and a higher number of instances.

Table 3.1: Comparison of aerial images datasets with the DOTA dataset, based on [7].

Dataset # of images # of instances # of classes
NWPU VHR-10 [68] 800 3651 10
SZTAKI-INRIA [69] 9 665 1

TAS [70] 30 1319 1
COWC [71] 53 32716 1
VEDAI [72] 1268 2950 3

ICAS-AOD [73] 1510 14596 2
HRSC2016 [74] 1061 2976 1

3k Vehicle Detection [75] 20 14235 2
DOTA [7] 2806 188282 14

After the original release of this data, two more releases added something new to it:

• DOTA v1.5 – this new version had the tiny objects also annotated, which increased

the number of instances to more than 400 thousand.

• Dota v2.0 – In this latest version, additional images were collected fromGoogle Earth

and GF-2 Satellite. This led to an immense increase in the number of images, 11,268.

30



Object Detection in Data Acquired From Aerial Devices

Likewise, the number of instances also increased to 1,793,658, and the number of cat-

egories was now 18.

At last, it is essential to showcase why there was the need to gather the dataset instead of

simply using one of the previously mentioned. Most of these datasets were gathered through

satellite images; none of them is in a scenario of wild forests like the one intended for this

project. Most of the datasets aremainly focused on vehicles and building detection. Further-

more, the problem with these datasets is that they consist primarily of images from different

places with different objects with no specific scenario. Moreover, no video datasets focused

on forest scenarios were also a downside, given how much information can be gained from

analyzing temporal information since objects in aerial images have low spatial information.

With this being said, it was decided that it would be more exciting and valuable to gather our

dataset with a drone and in a wild forest scenario focused on detecting people and vehicles

from aerial videos.

3.2 Contextualization

As part of the development of this thesis, a dataset was gathered that focuses on aerial image

data on wild forest scenarios. The main idea for this dataset was to detect possible criminal

activities such as causing a wildfire and carrying possible dangerous objects (i.e., lighters,

cigarettes, tanks of gasoline). However, these are extremely hard to capture due to their

small size and the fact that these videos were gathered through a drone that would be more

than 50 meters high; these objects would not be significantly visible.

At the project’s initial stage, there was a discussion on whether to use cameras or drones

to record the dataset. The question was about which one would bring the most benefits in

the long term and benefits in terms of data quality. Given that this specific scenario was the

forests, the first approach was to speak with the captain of Covilhã’s Fire Department and

ask if any cameras would be available to collect the data. The answer was that the forest is

filled with cameras, which detect unwanted people in forbidden sites, people setting up fires,

and general forest surveillance. We sent an email asking permission to access some of these

cameras and use them in the data collection process, but there was no response, and thus,

this idea was discarded. After everything was considered, the drone seemed the best option.

It also offered a few more advantages when compared to the cameras: complete control of

the recorded scenario, the possibility to control the height and camera angles, and, as a long-

term solution, it is more likely to have a few drones covering a given forest than thousands

of cameras spread throughout the whole zone.

3.3 Dataset Development

The drone used for the data collection process was DJI Phantom 4 Pro, illustrated in figure

3.2, provided by the University of Beira Interior.
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Figure 3.2: Phantom DJI 4 Pro.

The following table shows the aircraft and stabilizer specifications for this drone:

Table 3.2: Phantom DJI 4 Pro specifications.

Aircraft
Weight (g) 1388

Max Speed
S-mode: 45 mph (72 kph)
A-mode: 36 mph (58 kph)
P-mode: 31 mph (50 kph)

Max Tilt Angle
S-mode: 42°
A-mode: 35°
P-mode: 25

Max Wind
Speed

Resistance
10 m/s

Max Flight Time Approx. 30 minutes

Gimbal
Stabilization 3-axis (pitch, roll, yaw)

Controllable Range Pitch: -90° to +30°

The data collection process was divided into three phases:

1. Find and define which areas would be better to record videos.

2. Record the necessary amount of data to start experiments.

3. Annotate the data.

The first phasewas doneby analyzing a fewknown zones inSerradaEstrela, either byGoogle

Maps or by going there in person and considering whether it was a good place. Given that

we needed to record people and cars, it had to be a zone that included almost all terrains.

With this in mind, the chosen zone to record was Rosa Negra (this link will redirect to the

mentioned zone’s location); figure 3.3 delimits the main zone of where the recordings took

place and also, the sub-zones that were chosen for more specific terrains.
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Figure 3.3: Overview of the different recording zones.

Afterwards, the videos were recorded on particular days to obtain as much data diversity

as possible (i.e., morning, afternoon, and night scenarios). Additionally, as shown in the

previous figure,multiple zoneswere chosen based on their different terrains: a fewwithmore

tree density and dirt roads and others withmore tar roads, less tree density, andmore gravel.

The last phase of this process, data annotation, was performed in CVAT. This tool makes

annotating and tracking objects very simple; furthermore, annotations can be exported in

many different formats, making it helpful in trying the dataset on different models.

3.4 Dataset Specification and Statistics

In order to better analyze the dataset, this section describes a few of its statistical proper-

ties. The first properties being analyzed in the dataset are the video properties: the resolu-

tion chosen for the recording was 1920x1080, and the number of frames per second was 30.

The drone’s more detailed camera settings, supported video and photo encoding formats are

shown in table 3.3. The dataset consists of video clips with a total of 86150 frames. There

are 20006 frames with persons in the current dataset status and 6673 frames with cars.
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Table 3.3: Drone camera properties.

Camera

Sensor
1’’ CMOS

Effective pixels: 20M

Lens
FOV 84° 8.8 mm/24 mm (35 mm format equivalent)

f/2.8 - f/11
auto focus at 1 m - ∞

Mechanical Shutter
Speed

8 - 1/2000 s

Electronic Shutter
Speed

8 - 1/8000 s

Photo PEG, DNG (RAW), JPEG + DNG
Video MP4/MOV (AVC/H.264; HEVC/H.265)

In order to better showcase the dataset’s properties, a fewhistogramswere plotted to describe

different aspects of it. The first is a simple histogram that shows the different brightness

levels of all the frames in the dataset, shown in figure 3.4.

Figure 3.4: Dataset’s brightness distribution.

By analyzing the previous histogram, it is noticeable that most of the frames in the dataset

were taken during the day, 3.5, with more brightness with only a few examples, recorded

more at night, 3.6.

Figure 3.5: Day recording example. Figure 3.6: Night recording example.

Since terrains were a very important step in the experiments so far and crucial to making a

few conclusions, the following histograms, 3.7, 3.8, 3.9 and 3.10 show the relative frequency
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of each terrain relative to the whole frame.

Figure 3.7: Relative frequency of dirt terrain in
each frame. Figure 3.8: Relative frequency of forest terrain in

each frame.

Figure 3.9: Relative frequency of road terrain in
each frame

Figure 3.10: Relative frequency of gravel terrain
in each frame

The specific scenario inwhich this dataset was recorded is noticeable sincemost of the frames

are coveredmainly through forest, and then there are only a few zoneswith the other terrains.

The following histograms, 3.11 and 3.12, illustrate the distribution of bounding box areas for

each class, car and person. This is important for models where there is the need to setup

pre-defined anchor boxes that will be used to detect the objects; since they can be adapted to

every specific scenario, this data provides a solid foundation to change the anchor boxes of

those methods to ratios and scales that better fit this problem.
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Figure 3.11: Histogram for class person bounding
boxes.

Figure 3.12: Histogram for class car bounding
boxes.

More than anything, the previous histograms showcase how small the objects we are trying

to detect are. Even though in cars the bounding boxes are more significant, the bounding

boxes for almost every person are very small and thus, leading to a few problems that will be

discussed in the experiments section.

3.5 Dataset’s Second Iteration

The previous section describes the first iteration of the dataset gathered for this work. The

main objective until then was to gather a solid amount of data to perform experiments on

supervised methods and analyze their performance. However, once the project advanced

into the self-supervised phase, there arose a need for a more significant amount of data.

The main difference from this second iteration was that the data itself would only need to be

gathered and not annotated since the self-supervised experiment’s objective was to analyze

how we could use this unlabelled data to improve the model’s performance.

With this being said, this part of the dataset was gathered by considering the same four zones

as pictured in figure 3.13.

36



Object Detection in Data Acquired From Aerial Devices

Figure 3.13: Unlabelled examples of the new dataset’s iteration.

Furthermore, since the supervised results pictured a clear tendency that the models tend to

perform worse on the dirt terrain, the data gathered in this phase focused explicitly on this

terrain. The data collected for this second iteration consists of around 71 thousand frames

from the four zones. Table 3.4 shows the number of frames for both labelled and unlabelled

sets.

Table 3.4: Number of frames for the labelled and unlabelled set.

Type # Frames
Labelled Set 21 225
Unlabelled Set 71 352

Finally, we used the data gathered from this new recording session to perform more experi-

ments, both on supervised and self-supervised architectures. Close to the final phase of this

work, and although we had a significant amount of data to perform various experiments, we

noticed that obtaining better results and further analysing the self-supervised results would

require many more recording sessions.
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Chapter 4

Experiments and Discussion

The present chapter discusses the different experiments performed in this work. The first

section 4.1 presents the most relevant object detection metrics and how they are calculated

since they are the base for every experiment performed. Furthermore, section 4.2 aims to ex-

plain why there is such difficulty applying state-of-the-art methods to aerial data, providing

an extensive discussion of the experimental results for each model and every terrain. More-

over, section 4.3 illustrates the different self-supervised experiments using different ratios

of labelled and unlabelled data. Finally, section 4.4 provides the main conclusions from the

experiments performed in this chapter.

4.1 Object Detection Evaluation Metrics

In order to evaluate the bounding boxes that the system is outputting, we use Intersection-

Over-Union (IoU) which computes the intersection area between the ground-truth bounding

box and the system’s outputted bounding box. Based on the result of this measurement, it is

possible to analyze how well the system’s bounding boxes are when compared to the ground-

truth ones; this is done by calculating the number of true positives (TP), false positives (FP),

and true negatives (TN). Note that a prediction is considered a true positive when the IoU is

equal to or higher than a predefined threshold (usually 0.5); otherwise, if the IoU is below

that threshold, we consider that prediction a false positive.

The precision metric measures how accurate the system’s predictions are. We consider the

number of true positives (TP) related to all the system’s predictions (TP + FP) when calcu-

lating precision, as shown in equation 4.1.

Precision =
TP

TP + FP
(4.1)

Another criticalmetric to consider is themodel’s recall, also known as sensitivity. Thismetric

shows how many positive predictions the model predicts (TP) related to the total number of

cases it should have predicted (TP + FN), equation 4.2.

Sensitivity =
TP

TP + FN
(4.2)

Themain objective of everymodel is to have a high precision while maintaining a high recall.

It usually happens that there are scenarios where one might be more beneficial than the

other. For example, in the medical field, a model must have a high recall which means that

themodel will predict 100% of the positive cases, even if that means having a lower precision
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value. Because even if the model outputs more false positives having a higher recall, it is

much more important to diagnose a patient with a false positive than a false negative.

Even though specificity is not considered when dealing with object detection tasks, given

that in most scenarios, it is not feasible to analyze the model’s true negatives. However, after

analyzing themodel’s output and tweaking the network’s last layer, we also obtained negative

samples from the model. This metric provides an overview of how the model will likely not

output a positive prediction when it should not. This is done by measuring the rate of true

negatives (TN) concerning the total number of true negatives (TN) and false positives (FP),

shown in 4.3.

Specificity =
TN

TN + FP
(4.3)

Average precision is the most used metric to measure the performance of an object detector.

This metric describes recall and precision in a single value calculated by averaging precision

across all the recall values. Primarily, we divide the recall into 11 points from 0 to 1.0 and

then compute the average precision for those values independently. Lastly, we divide the sum

of all those average precision values at each recall point by the number of points; equation,

4.4, illustrates this precisely, where APr is the average precision for each recall point. Note

that this was the official way of calculating AP for challenges like the PascalVOC competition.

However, after 2010, the average precision started being calculated using every recall point,

not only 11.

AP =
1

11
×

∑
r∈0,...,0.1

APr (4.4)

Afterwards, we have mean average precision, which consists of averaging the AP over all the

problem’s classes, as shown in equation 4.5, where N corresponds to the number of classes

and APi is the average precision for each particular class.

mAP =
1

N

N∑
i=1

APi (4.5)

As briefly explained, there is a trade-off between precision and recall. Even though the best

possible scenario is that the model has high precision and a high recall, this is almost im-

possible due to the confidence threshold. Most models’ predictions come with a value corre-

sponding to the model’s confidence that an object exists. By altering this threshold, we are

actively impacting recall and precision values. This means that if the confidence threshold is

high, the model will shorten its positive predictions, subsequently increasing the number of

false negatives (lowering the recall metric). On the other hand, it will decrease the number

of false positives (increasing the precision metric). Contrarily, if we decrease the threshold,

we lower the precision but increase the recall.
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With this being said, it is essential to analyze and observe this trade-off between precision

and recall for each model to analyze the best confidence threshold for our specific task. This

is done by plotting the precision-recall curve consisting of different points, each correspond-

ing to one particular confidence threshold. The idea is that by analyzing this curve, we can

find the point closest to the point (1,1), this being the perfect scenario, and consider the cor-

responding confidence threshold as the best one possible for this model.

4.2 Supervised Learning Experiments

4.2.1 Deep Feature Flow Evaluatin

This model and the previous one were trained with a learning rate of 0.00025, which was

the default that the authors used with the ImageNetVID. Since this architecture uses fea-

ture propagation, the key-frame interval chosen was 10, the same as in the original proposal,

meaning that the feature maps of the key-frame are propagated to the next 10 and then ag-

gregated. The following table, 4.1, includes all the parameters and values used in this exper-

iment.

Table 4.1: Parameters used in the Deep Feature Flow model’s training.

Parameter Value
Optimizer Adam
Learning
Rate

0.00025

Batch
Size

2

Epochs 50
Key-frame
Interval

10

The first step in object detection experiments is plotting the precision-recall curve. This will

show us which confidence threshold provides the best trade-off between recall and precision

for this problem. Note that, as previously said, after plotting the PR curve, the way to find

the best threshold is to calculate how far each point is from the perfect scenario (i.e., point

(1,1), which represents perfect recall and perfect precision, as shown in figure 4.1.
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Figure 4.1: Precision-Recall curve for the Deep Feature Flow model.

The optimal confidence threshold for the DFF model was 0.39. Note that the model’s preci-

sion decreases rapidly when we lower the threshold. This happens typically, given that the

higher the confidence threshold, the fewer predictions are considered and thus, making it

more precise. On the other hand, if we lower the threshold, the model will consider predic-

tions with less confidence and increase the number of false positives. The average precision

for this model was also calculated considering this; refer to figure 4.2 which illustrates the

results obtained for each class.

Figure 4.2: DFF model’s average precision for each class.

Considering everything said up to this point, the results shown above make sense from the

start. The standard supposition is that it is expected that the model is miss detecting people

because they are small. Furthermore, it is easier to detect cars since they are considerably

larger than people when seen from above. However, since the beginning, it has been men-

tioned thatwewould knowwhere themodelwas failing themost by performing segmentation

to outline the different terrains and thus, instead of taking these results for granted and only

explaining them through mere suppositions, it is crucial to understand the reason for the

miss predictions and where they are happening. For this process, we calculated the number

of true positives, false positives, true negatives, and false negatives according to their terrain.

Afterwards, we can calculate other metrics such as specificity with these values, illustrating
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which type of terrain themodel is failing. The following figure, 4.3, illustrates both sensitivity

and specificity of the model for both classes but categorized by terrain.

Figure 4.3: Sensitivity and specificity for the DFF model for each class per terrain.

The previous plots providemuch valuable information but first, note that the class person has

values for all terrains given that people could appear in every terrain. However, cars only ap-

peared on the tar and dirt roads, meaning that only for those terrains themodel would detect,

and indeed, it is what happens. By analyzing the left plot, which showcases the sensitivity

per terrain, it is noticeable that even though themodel has a good precision in detecting cars,

there are still cars that it does not detect, which happens mostly on dirt roads. This happens

because there are only a handful of recordings where cars are actually in the dirt; thus, the

model is not robust enough in this terrain. On the other hand, the model finds most cars

on tar roads which is a sign. When it comes to the person’s class, even though the model

is not that good at finding all individuals in every terrain, this performance is worse in the

dirt. This enables us to conclude that the model lacks object detail to find the best features

to detect them successfully.

This is even more noticeable in the specificity plot, which is shown on the right and illus-

trates the model’s performance in identifying the negative cases when they are negative (i.e.,

detecting that there is not a person when in fact, there is not). By analyzing this plot, we can

conclude that themodel is correctly not detecting cars, with only a drop of specificity for both

terrains (dirt and road). Furthermore, when analyzing the person’s class side of the plot, it

is clear what is going wrong with the model. It predicts people where they are not, and the

terrainwhere this happens themost is dirt and gravel. The key takeaway from this plot is that

the model is outputting false predictions for people in the dirt and gravel for some reason.

By knowing that these models learn to find the best features to represent an object, it is clear

that there must be some scenarios where the model considers a few places to have the same

characteristics as a person. In order to completely understand why this happens, it is crucial

to analyze an example of when this happens. Consider the following figure, 4.4, which is a

frame of a clip given to the model as part of the test set.
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Figure 4.4: Frame example of two people walking on a dirt road.

The figure above is one of the many examples where it is very noticeable that we humans can

look at it and perceive that two people are walking by. However, a model must analyze that

specific region and extract valuable features, which can be somewhat hard in these specific

scenarios. Take into consideration the following image, which represents the model’s output

for two people walking, figure 4.5.

Figure 4.5: Model’s correct predictions for two people.

Even though there are almost no details, the model still finds the best features to detect peo-

ple, and it can do it somewhat accurately, showcasing how well these models can find those

features. However, this leads to a particular problem, and it is the factor that most of the

time decreases these models’ accuracy overall for this problem’s type. Previously we noticed

that the model was outputting wrong predictions in the dirt terrain, and by analyzing the

following figure, 4.6, it should be clear why.
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Figure 4.6: Model’s correct predictions for two people but falsely detecting a person in the dirt.

The previous figure is a frame of the same clip as the previous one, but the model predicted

another person, only a simple hole on the ground. The fascinating factor here is that, as said

from the beginning, expected from the beginning, the hole on the dirt road is very similar to

a person when seen from such a height, making it understandable that the model confuses it

as a person.

Figure 4.7: Region that the model confuses with a person.

The previous figure shows a close-up of the previously mentioned scenario to showcase fur-

ther how detail is essential in these tasks. We can see how themodel outlines this hole almost

perfectly with a high confidence level on the right side. This corroborates the first parts of

this document which stated that it was not that easy to achieve the same results on aerial im-

ages with state-of-the-art object detectors, which were not correctly designed for scenarios

like this.

4.2.2 Flow Guided Feature Aggregation Evaluation

The experiments for this model were performed using the same parameters as the previous

one, making it possible to analyze how they perform under the same conditions. Further-

more, the same parameters that were used to train the previous model, shown in table 4.1,

were also the most appropriate for this model. In terms of performance, this model appears

to be better in terms of average precision, especially in the class person, when compared to

the previous video object detector. The following figure, 4.8 shows the precision-recall curve

for this model.
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Figure 4.8: Precision-Recall curve for the FGFA model.

The model has better precision on the class person and performs the same as the previous

one when detecting cars, shown in figure 4.9. This improvement in the performance makes

sense also considering the models’ architectures. Since the DFF model propagates feature

maps’ information to the following, the FGFA model will consider the features of both the

previous and following frames.

Figure 4.9: FGFA model’s average precision for each class.

Even though there was an improvement in precision, this model shares the same problem

that the previous one did, which leads to miss detections on certain terrains. The following

figure, 4.10, shows this model’s sensitivity and specificity graphs.

Figure 4.10: Sensitivity and specificity for the FGFA model for each class per terrain.

With these results, we can notice that the model has better sensitivity in the dirt and forest
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terrains, which is an improvement, meaning that themodel can correctly detect more people

in those terrains. However, if we look at the specificity plot, this model also suffers from

the same problem as the previous one. It is detecting people where there are none in the

same terrains. Since that, in the previous model, we analyzed an example of the model miss

detecting a person on a dirt road; in this model, we will analyze another terrain to perceive

why this is happening. The main cause for these miss detections is that the model does not

find the best features given the object’s detail when seen above at such heights. This makes it

logical that themodel confuses people with holes in the dirt terrain, and in the gravel terrain,

the fact that there are many rocks makes it hard for the model to distinguish. In the forest

terrain, there are also false positives since, in these scenarios, shadows are another important

factor leading to the model’s confusion. Consider the following figure 4.11.

Figure 4.11: Frame example of the test set.

In the previous figure, shadows affect many zones due to the sun’s position at that time.

Considering this and the previously mentioned statements about analyzing features, the fol-

lowing figure, 4.12 represents the model’s output to this frame.

Figure 4.12: Model’s output for the previous frame containing a miss detection and a correct detection.

Even though the model made the correct prediction for the car, it also predicted a person in

a zone affected by a shadow with very high confidence. Once again, this is what affects the

model’s accuracy and precision overall. These techniques might provide an excellent way to

detect objects from aerial images with some post-processing methods.
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4.2.3 Static Camera-based Background Subtraction

Following the experiments described in section 4.2, and based on the problems observed

there, this section aims to solve them by using the additional information obtained by the

different background subtraction algorithms. The main idea is to use the result of the back-

ground modellers to determine if the detector’s prediction is valid.

Primarily, it is crucial to analyze how the different types of algorithmsperform in the different

scenarios of this work (i.e., roads, dirt, and forest). In the first example, we use the the static-

camera background subtraction algorithm mentioned in section 2.6.1, Gaussian Mixture-

based Algorithm. Figure 4.13 illustrates one example of the dataset’s frames and the same

frame after being passed through the background modeller.

Figure 4.13: Static-camera background subtraction algorithm output for an example frame containing a person
in dirt and a vehicle on a tar road.

It can be noticed that the model fails to model the person and the car. Additionally, this oc-

curs inmost of the scenarios on our dataset, providing a clear illustration that the algorithms

which work well for static camera scenarios fail to model the background in scenarios where

the camera is moving. Another example is shown in figure 4.14, which illustrates how the

algorithm performs in a different scenario.

Figure 4.14: Static-camera background subtraction algorithm output for an example frame containing two
people on a dirt road.

In this case, it can also be noticed that the algorithm also does notmodel people on dirt roads

either. Moreover, given thatmost of the dataset consists of scenarios like these, it is clear that

this algorithm is not the most suitable to use as support to the object detector.
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4.2.4 Dynamic Camera-based Background Subtraction

The next phase of this experiment was to evaluate how the JA-POLS algorithm, mentioned

in 2.6.2, which was designed especially for moving cameras, would perform in the same sce-

narios. Figure 4.15 and figure 4.16 illustrate the same scenarios only when applied with this

algorithm.

Figure 4.15: Moving-camera background subtraction algorithm output for an example frame containing a
person in dirt and a vehicle on a tar road.

Figure 4.16: Moving-camera background subtraction algorithm output for an example frame containing two
people on a dirt road.

The previous figure clearly shows that this algorithm can successfully model the person on

the frame and partially the car on the top image. Additionally, the same occurs for the second

example, where the algorithm can also successfully model the two people on the dirt road,

which is a significant improvement from the static-camera algorithm. Another terrain where

this is verified is the gravel terrain, as shown in figure 4.17.

Figure 4.17: Illustration of the original example frame, shown on the right side, with the static-camera
algorithm’s output, shown on the center image, and the dynamic-camera algorithm’s output shown in the left

side.
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Inmost of the scenarios of this project’s dataset, as shownby the previous figures, the dynamic-

moving camera algorithm can model the people and the vehicles particularly well. This sets

up a good baseline for the hypothesis that by using this algorithm, we can, as a post-process

method, define valid regions in which we can consider the object detector’s predictions valid.

4.2.5 Evaluation with Background and Static-based Background Subtraction

As previously explained, the main idea for using the background modeller is to determine

possible regions of interest (i.e., zones where objects appear to be moving) and limit the

detections of the model to those zones only. This would prevent scenarios such as those

shown in figure 4.6, where the model detects a person when it is a hole in the ground. If we

consider, for example, the output of the background modellers for that specific frame, we

obtain the following results, figure 4.18.

Figure 4.18: Illustration of the original frame where the video object detector model miss detected a hole with a
person, side-by-side with the output of the dynamic-camera algorithm background modeller’s output for that

same frame.

It can benoticed that, in the background algorithm’s output, the twopersons are substantially

highlighted. At the same time, there is no obvious highlight in the ground hole zone which

was previously classified as a person. With this being said, in the following experiments, we

will only consider the output detections of the model valid if they match a substantial part of

the background model’s output.

By delineating this boundary between valid and invalid detections, it is possible only to eval-

uate the detections considered valid and obtain the same metrics for these new detections

to compare the model’s performance without background removal, with the static-camera

algorithm, and with the moving-camera algorithm. The first set of results is shown in the

graph represented by figure 4.19.
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Figure 4.19: Mean Average-Precision for the FGFA model using none of the background-modellers, the
static-camera based algorithm and at last, the moving-camera background modeller as valid and non valid

region identifiers.

By analyzing the previous graph, we can observe that we obtain even worse results by con-

sidering the static-camera algorithm and using it to separate the valid and invalid detections

than without any algorithm. This happens because, as shown in figure 4.17, since this algo-

rithm cannot successfully model neither the persons nor vehicles, there will be detections

that contain an object within it, but since the background modeller does not model any of

the objects, they are considered. However, we obtain much better results when using the

moving-camera background modeller to perform the separation. In order to better perceive

in which specific scenarios the performance is increasing, a new set of terrain metrics were

obtained, shown in figure 4.20.

Figure 4.20: Region that the model confuses with a person.

The main problem with the video object detectors analyzed in this work was that they would

oftenmistake variables that appear in this specific scenario (e.g., ground holes and shadows)

with people and thus, affecting its evaluation performance and leading to false positives.

These holes and shadows would often appear on dirt roads, the same terrain where people

appear more in the dataset. With this being said, there is a significant improvement in the

previous graph, especially in the dirt terrain. Based on examples such as the one illustrated

in 4.18, it is clear that by using only the detections in a valid region, we remove most of the

false positives that often occurred while using these video object detector models.
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4.3 Self-Supervised Learning Experiments

As mentioned previously in this document, another main topic in this work is the analysis

of state-of-the-art self-supervised methods when applied to this dataset. The main idea is

to adapt the architecture shown in 4.3 to our problem. Figure 4.21 depicts the proposed

architecture.

Figure 4.21: Self-supervised architecture proposed for this work.

There is no need for depth, audio, or thermal modalities in this situation; thus, the only

modality used in the proposed architecture is the RGB one. The idea is that the teacher

model provides the detections, which are then considered to be the ground truth and are

further used to calculate the focal loss, according to 2.1, with the student’s detections.

This way, we can have a part of the dataset that is labelled and is used to train the teacher,

and then we can use the non-labelled part of the dataset to train the student, as shown in

figure 4.22.

Figure 4.22: Illustration of the two different data sources for the self-supervised architecture.

In the development of this work, the currently available data, both in the labelled and unla-

belled sets, are the following:

• Labelled Dataset – 21.225 frames;
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• Unlabelled Dataset – 71.352 frames.

With this being said, the experiments will consist of training the teacher model with the la-

belled dataset and then using this trainedmodel to be the provider of ground-truth detections

for training the student. In order to analyze how the student model performs, the experi-

ments were performed by increasing the amount of data used in the student’s training, U,

based on the original size of the labelled dataset.

4.3.1 EfficientDet Evaluation

In order to perform experiments with the self-supervised architecture proposed, we must

first train the teacher model with the labelled dataset. Table 4.2 shows the parameters used

to train this network.

Table 4.2: Parameters used to train the EfficientDet model.

Parameter Value
Optimizer Adam
Learning
Rate

1e-6

Batch
Size

6

Epochs 25
Anchor
Scales

[0.5, 2, 4]

Anchor
Ratios

[(0.9, 1.1), (1.0, 1.0), (1.1, 0.9)]

After training thenetworkwith the previous parameters, we obtain results such as themodel’s

mean average precision, which we can compare with the same metric obtained for the previ-

ously mentioned video object detectors, illustrated in figure 4.23.

Figure 4.23: Average precision evaluation for each class by the EfficientDet model, shown on the left side of the
graph, and for the FGFA model, shown on the right side of the graph.

The previous graph shows a noticeable improvement, especially in the class person, and even

though there are these improvements in the class person, there is still a downside to using

this model over the FGFA one. The following figure, 4.24 illustrates why the video object

detectors work particularly well in tracking objects.
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Figure 4.24: Illustration of the same example frame’s output from the different models. The figure on the left,
shows the output from the EfficientDet model which shows no detections. The figure on the right illustrates the

output from the FGFAmodel with at least one correct detection.

By analyzing the image, we notice that the single-frame-based detector does not detect any

object in a particular situation when another object partially blocks the object. In contrast,

the video object detector can successfully identify the object even when the tree partially

blocks it. In order to obtain a more profound insight into how the model perceives these

objects and what types of features it is extracting, we obtained the features maps of the dif-

ferent fusion levels, as illustrated in 2.8. For illustration purposes, we obtained these feature

maps for the two types of classes involved in this scenario, the first, for the class car, shown

in figure 4.25, and the latter, for the person class, shown in figure 4.26.

Figure 4.25: Illustration of the different levels of feature maps extracted for an example of a frame from the test
set containing a vehicle.

Figure 4.26: Illustration of the different levels of feature maps extracted for an example of a frame from the test
set containing a person.

54



Object Detection in Data Acquired From Aerial Devices

The first figure, 4.25, provides a visualization of the different levels of feature that the Effi-

cientDet model extracts from the corresponding frame shown on the right side. On the one

hand, it is very noticeable that the model can extract crucial features through its learned fil-

ters that successfully portray the car, thus showcasing why thismodel is remarkably accurate

when detecting cars on dirt and tar roads. On the other hand, the second figure, 4.26, also

clearly illustrates why these models’ worst problem is precisely detecting people. Due to the

size of people in these types of images, it is challenging in some scenarios for the model to

extract meaningful features that will lead to the detection of the object. Additionally, it is

essential to note that the EffcientDet model was designed to combine multiple levels of fea-

ture maps to obtain an even better representation of classes than other models. Even with

these models, which are designed to perform multi-level feature fusion, having a hard time

extracting meaningful features to characterize a person in an aerial image, it is also clear

why models such as the video object detectors perform even worse on detecting people. Fur-

thermore, given that this model performs better in average precision than the video object

detectors, it is interesting to analyze in which terrains this improvement occurs. The follow-

ing figure, 4.27 illustrates the graph for specificity corresponding to the EfficientDet model

related to the different terrains.

Figure 4.27: Graph representing the terrain specificity results for the EfficientDet model.

The main improvement when comparing the previous graph to the one shown in figure 4.10

occurs in the class person and the dirt terrain. In the evaluation of video object detectors, the

main problemwas the output of false positives due to the reasons specified in subsection 4.2.1

and subsection 4.2.2. These occurrences do not happen when evaluating the EfficientDet

model, as shown in the following figure 4.28.
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Figure 4.28: Illustration of the different models’ outputs for the same frame. On the left, the output of the
FGFAmodel, including a miss detection. And, on the right, the output from the EfficientDet model, with only

valid predictions.

The scenario shown in the two previous figures illustrates the main reason for the Efficient-

Det’s performance being better than the FGFA’s. Furthermore, these false positives mainly

occurred in the dirt due to its natural characteristics, often being confused as a person.

4.3.2 Self-Supervised Proposed Method Evaluation

Posterior to training the EfficientDetmodel, we can then use this model as the teacher in the

self-supervised learning architecture and evaluate how it performs in different amounts of

data used to train the teacher. In the first phase of these experiments, the ratio of data used

in the teacher and the student’s training is illustrated in the following figure, 4.29.

Figure 4.29: Distribution of labelled and unlabelled data related to second phase of self-supervised
experiments, with a baseline of 20k labelled set.

As shown by the previous image, this experiment will be performed by training the teacher

with 20k labelled frames and then using that teacher in the self-supervised architecture. The

parameters used in the training of the student model are shown in the following table, 4.3.
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Table 4.3: Parameters used to train the student model in the self-supervised architecture.

Parameter Value
Optimizer Adam
Learning
Rate

1e-8

Batch
Size

6

Epochs 50
Patience 10
Anchor
Scales

[0.5, 2, 4]

Anchor
Ratios

[(0.9, 1.1), (1.0, 1.0), (1.1, 0.9)]

This experiment’s fundamental objective is to analyze how the student’smodel performswith

the different unlabelled amounts of data and if, at any time, it can surpass the teacher’s base-

line performance. This would mean that the student model would get more robust, and its

ability to generalize to a broader range of scenarios would improve. The experiments were

performed by setting a fixed number of epochs, 50. However, in most training runs, the

model stopped around the 30th epoch due to the patience setting, which was set to 10 epochs

(i.e., early stopping the model’s training once it stops learning). The following graph, 4.30,

provides the evolution of the student’s performance and the amount of data used in its train-

ing.

Figure 4.30: Graph illustrating the first experiment student’s average precision evolution along with the
number of unlabelled data used, with the teacher’s baseline when trained with 20 thousand frames.

The first observation we can get after analyzing the previous graph is that, after the first

iteration with the baseline data, the student’s performance starts lower than the teacher’s

model. This is because we are introducing new scenarios to the dataset and thus, worsening

the model’s performance on the test set. However, the main idea was that at the beginning,

themodel wouldworsen, but while increasing the amount of unlabelled data, it would be able

to adapt and be more robust. This happens after the second iteration, where the student’s

performance increases slowly towards the baseline performance. In this experiment, the last

iteration used five times the baseline data (100k frames), and the tendency of the graph was
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still in an upwards direction which led to the belief that the performance would reach the

teacher’s performance and, in theory, surpass it.

After this experiment and the graph showed an upwards trend, it led to the belief that if

there were a more significant amount of data, the experiments would show a continuous

performance increase. However, the amount of data gathered for this project was insufficient

for more experiments. With this being said, the other manner of performing this experiment

but with more ratios of labelled and unlabelled data would be to train the teacher model

with fewer data. The following figure, 4.31, illustrates the data ratio used in the subsequent

experiments with a baseline of 10k frames.

Figure 4.31: Distribution of labelled and unlabelled data related to second phase of self-supervised
experiments, with a baseline of 10k labelled set.

By using the distribution previously shown, we could perform the same experiment but now

up to 10 times the baseline amount of data that was used to train the teacher. As expected,

the baseline average precision also lowers because we are using a smaller amount of data

to train the teacher than in the previous experiments. With this being said, the following

graph, 4.32, illustrates the results of the different experiments performed in this phase for

the different amounts of data used in the student’s training.

Figure 4.32: Graph illustrating the first experiment student’s average precision evolution along with the
number of unlabelled data used, with the teacher’s baseline when trained with 10 thousand frames.

In this experiment, we can verify that the precision drops after the first iteration, as it was

verified in graph 4.30. Additionally, perhaps the most interesting fact from this graph is that
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the student’s performance is close to the teacher’s baseline performance. In contrast to previ-

ous experiments where the student’s performance tended to increase, there was not enough

data to analyze how it would develop; in this experiment, withmore iterations, we can almost

achieve the teacher’s performance with a ratio of 10 times the labelled data. Considering this,

achieving the teacher’s performancewas not the primary goal of this experiment, but instead,

analyzing how the student’s performance would evolve while providing various amounts of

unlabelled data. This experiment clarifies that, by using an amount of unlabelled data 10

times higher than the original labelled dataset, we can achieve almost the same results as if

we were only to train the model with that original labelled data. Even though this might not

seem relevant for this scenario, not that inmost real-life scenarios, models need to be trained

with hundreds of thousands, if not millions, of frames and thus, making the possibility for

having a ratio of unlabelled data up to 50 times or more. Note that these experiments were

done with the dataset gathered explicitly for this work. Even though it has many good char-

acteristics, it is in no way complete or has enough amount of data needed to perform more

extensive experiments.

To analyze how the architecture would perform when given more sets of unlabelled data, we

further decreased the data in which the teacher was trained to five thousand labelled frames.

The ratio of data that we obtained is illustrated in the following figure, 4.33.

Figure 4.33: Distribution of labelled and unlabelled data related to second phase of self-supervised
experiments, with a baseline of 5k labelled set.

By using the previous sets of labelled and unlabelled data, we could performmanymore iter-

ations compared to the previous experiments. The precision of the teacher model decreased,

just like in the other experiments. However, it allows us to understand better if, at any mo-

ment, we can obtain a student model that can outperform the teacher’s performance. With

this being said, the following graph, figure 4.34, illustrates the evolution of the student’s pre-

cision by increasing the amount of unlabelled data gradually.
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Figure 4.34: Graph illustrating the first experiment student’s average precision evolution along with the
number of unlabelled data used, with the teacher’s baseline when trained with five thousand frames.

From analyzing the experiments illustrated by the previous graph, we notice that at a ratio

of 16 times the original data, we indeed obtain a student model that outperforms the teacher

model. Additionally, it can also be noticed that since we were able to perform many more

iterations, it is noticeable that the student’s precision is still increasing with the increase of

unlabelled data provided. Although the precision value, in this case, is not very significant,

in this experiment, we were able to illustrate that the student’s model can outperform the

teacher’s model past a specific ratio of labelled and unlabelled data. This sets up the prece-

dent for further experiments where we have much more available data; for example, in a

situation where we have 400k available frames, we can start by labelling 20k frames and

then use the rest in a self-supervised matter to improve the teacher.

Finally, after performing these experiments, to further analyze how the student’s perfor-

mance would evolve with more iterations of unlabelled data, there would be the need to re-

duce the set of labelled data used to train the teacher’s model even more. However, as seen

before, the teacher’s precision drops by using fewer data to train it. This happened when

we trained the teacher with 10 thousand and five thousand frames instead of the original 20

thousand. The main problem with performing these experiments with this limited amount

of data is that, for us to use the teacher model in the self-supervised architecture, we need to

ensure that themodel can generalize well for the unlabelled data. If we use amodel that does

not perform well on new data, then there is no logic in training a student’s model in a self-

supervised manner to achieve even better results. In past experiments, even when training

the teacher model with 10 thousand frames, its performance was good enough to generalize

to the new unlabelled data; however, when we start training the teacher with fewer data, like

1k, then it starts to become clear that its generalization capability starts decaying, as shown

in figure 4.35, making it non-fitting for the self-supervised architecture anymore.
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Figure 4.35: The left figure illustrates the output of the teacher’s model, trained with 10 thousand frames for an
unlabelled frame. The figure on the left illustrates the output of the teacher’s model but then trained with a

thousand frames for that same frame.

For this reason, the main objective of performing more extensive experiments would be to

obtain more unlabelled data and simultaneously build a more robust teacher capable of per-

forming better in unseen scenarios. Making it so that, when inserted into the self-supervised

method, it would be able to provide valid and quality ground-truth predictions when training

the student model.

4.4 Conclusions

The primary objective of the first experiments was to analyze how video object detectors

performed on the custom dataset gathered for this work. Based on the results that were dis-

cussed in section 4.2, we can conclude that, for most scenarios, both video object detectors,

DFF and FGFA, can detect people and vehicles. Even though the FGFA model was the best

out of the video object detectors, both these models tend to perform worse when detecting

people, especially on dirt terrain, as illustrated in figure 4.3 and figure 4.10. After analyz-

ing specific scenarios in which these miss-detections occurred, it was noticed that particular

environment variables were often confused with people (i.e., holes in the dirt terrain and

shadows). The analysis of these results enables us to conclude that applying models that

work incredibly well on state-of-the-art datasets but that, when applied to aerial images, suf-

fer from these problems that surge from the problem’s nature.

Afterwards, the next step was analyzing how a single-frame-based object detector would per-

form in the same dataset. As shown in subsection 4.3.1, it became clear that even though this

model obtains better performance in average precision, especially when detecting people,

it also has its downsides. In this model, we obtain more accurate detections, meaning that

the problem’s nature causes fewermiss detections. This is because the EfficientDet performs

multi-level feature fusion and, thus, can extractmoremeaningful features from frameswhere

the object appears on a tiny scale, as it occurs in this work.

Subsequently, two methods were proposed to solve the previous methods’ downsides after

analyzing the results and showing the downsides of both the single-frame-based and video
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object detectors in aerial images. The first method uses background removal algorithms to

identify which detections are valid. In sub section 4.2.4, it is clear that the best algorithm to

use is, logically, the one designed for moving-camera problems. We can increase both video

object detectors’ performance by using this method to define regions where we can consider

the detection valid. The second method uses a self-supervised method to utilize unlabelled

data to increase the supervisedmodel’s performance. In subsection 4.3.2 we explore how the

self-supervised architecture behaveswith different ratios of labelled andunlabelled data. The

first observation was that the performance of the student model kept increasing the more it-

erations; however, the ratio of labelled and unlabelled data only allowed for the execution

of five different iterations. Afterwards, we decreased the data used to train the teacher and

then performed the same experiments. We observed that, even withmore iterations, the stu-

dent’s performance improved further, but it was not enough to surpass the teacher. Finally,

we performed a final experiment by only training the teacher with five thousand training

frames and then using the rest of the data in the self-supervised architecture. In these final

experiments, we could surpass the teacher’s performance at a ratio of 16x the original data;

this indicates that, if we have enough unlabelled data, we can develop a more robust model

using this architecture.

Furthermore, we tried decreasing the training set for the teacher evenmore; however, the de-

crease in performance began affecting the performance of the self-supervised method; since

the teacher is not able to generalize well for unseen data, there is never going to be an advan-

tage on using this method given that is mainly based on the teacher’s performance on unla-

belled data. The main improvements in this experiment are to gather more data and: train

the teacher with more labelled data to improve generalization and, in the self-supervised

method, to experiment with more iterations of unlabelled data.

Finally, these experiments mainly illustrated that, due to the problem’s nature, there are

specific scenarios in which these models fail to detect any object. These miss detections oc-

cur mainly on people due to their tiny scale on the frame. We have shown that, on the one

hand, video object detectors show a better capacity for tracking persons and vehicles but tend

to confuse some environmental variables. On the other hand, single-frame-based methods

such as EfficientDet do not confuse these environmental variables due to their better feature

extraction architecture. However, they often fail to track the object throughout the object’s

course.
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Chapter 5

Conclusions and Further Work

The main focus at the start of this work was to gather a specialized dataset for the problem

in the matter, annotate it, and then use it to perform different experiments with different

types of state-of-the-art object detectors. After performing such experiments, we analyzed

the results, shown in chapter 4. We observed that when applying these models to a non-

conventional aerial imagedataset, the problemsmentioned at the beginning of this document

occur. While these models are considered exceptional at detecting objects in conventional

datasets, their performance is not as good when facing aerial data, mainly due to the prob-

lem’s natural characteristics mentioned in section 3.1. With the experiments performed in

section 4.2 we could thoroughly analyze the models’ outputs and determine precisely which

terrains and classes the models had worse performance. The worst terrain was dirt, and the

worst class was the person. These results precisely showcase the assumptions made in the

beginning about what problems would arise from these models. The scale of the class person

and its lack of detail, when seen from such height, makes it difficult for these models to find

the optimal features for that object. One evidence of this occurrence is illustrated in figure

4.26, where we see that even the EfficientDet model, which combines different level feature

maps to obtain a better representation of an object, is barely able tomodel the person in con-

trast to vehicles. We also show in figure 4.6 that environment variables such as ground holes

can be easily mistaken for a person.

We conclude that both models have their downsides; however, in this work’s scenario, it is

better to have a model that sometimes outputs false positives but can track the object for its

entire course, even if it is slightly obstructed. Note that, even though these miss detections

are not very harmful in this context, we could not guarantee that this would not be a recur-

ring factor in the system’s deployment and would make it ineffective or exploitable. Thus,

we proposed using background subtraction to filter the model’s detections and determine

the valid ones. As shown in section 4.20, we reduced the number of miss detections to the

point where the performance of the video object detectors using the background removal as a

post-processing method matches the single-frame-based method results in terms of average

precision.

The last objective of this project was to use a self-supervised architecture to analyze how

valuable unlabelled data could be in creating a more robust alternative to the self-supervised

model. In most real-life scenarios, gathering data is often time-consuming; however, anno-

tating all that data is even more time-consuming and requires intensive labour. The main

idea would be not to need to annotate all the data but instead annotate a partition of the

whole set and then use the labelled and unlabelled sets to train an even more accurate and

robust model. We concluded that with the available data, the self-supervised method could
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only achieve the same results as the supervised method, as described in subsection 4.3.2.

Moreover, we show that the tendency of the student model increases the more unlabelled

data used. We consider that the results support the possibility that, in scenarios where the

amount of unlabelled data is much higher, we can obtain a self-supervised model that out-

performs the supervised teachermodel. In amore advanced stage of this work, it would be of

high value to present a graph which illustrated the relation between the number of labelled

data and the number of unlabelled data that would be needed to improve the supervised

method, as shown by the example graph in figure 5.1.

Figure 5.1: Example of the graph we could obtain by performing experiments with more data. In this graph, we
would illustrate the minimum amount of unlabelled data that it would require to surpass the performance of

the supervised model, based on the original labelled data size.

Suppose we performed all these experiments. We could then analyze how the self-supervised

architecture would behave with the different amounts of original labelled data and the var-

ious amounts of unlabelled data and design a graph such as the previous one. By having a

graph like this, wewould be able to, at the start of any project, consider the size of our dataset,

decide to only label it partially according to the graph, and then use a self-supervised archi-

tecture to improve the supervised model results. We could not perform such experiments

due to the lack of available data and because performing such experiments without dedi-

cated servers takes an immense amount of time; however, further plans for this work could

include a much more rigorous and intensive data gathering process, so there would be the

possibility to perform all the experiments.

Finally, further development of this work can focus on integrating single-frame-based and

video object detectors in a self-supervised matter. At the current stage of this work, the self-

supervised experiments were performed using the EfficientDet model as in the original ar-

chitecture. However, it would be interesting to use an additional RGB video object detector

teacher instead of a single RGB teacher for the possibility of considering the detections of
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these two models, as shown in figure 5.2.

Figure 5.2: Illustration of the new proposed self-supervised architecture.

Primarily, we would obtain precise predictions from the EfficientDet and, additionally, we

would also only obtain precise predictions from the FGFA model by applying background

subtraction post-processing but also, as it has been evidenced, we can obtain predictions

where objects are partially hidden or obstructed, which single-frame-based methods tend to

miss.

Furthermore, gathering and annotatingmore data in wild forests would be essential to build-

ing a complete dataset covering a wide range of scenarios, which would be used to buildmore

robust models. Regarding this, there would also be the need to gather a more significant

amount of unlabelled data thatwould then be used to performmore extensive self-supervised

experiments.
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