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Abstract

Continuous efforts have been made in searching for robust and effective iris coding methods,

since Daugman’s pioneering work on iris recognition was published. However, due to lack of ro-

bustness, the error rates of iris recognition systems significantly increase when images contain large

portions of noise (reflections and iris obstructions), resultant from less constrained imaging condi-

tions. Current iris encoding and matching proposals do not take into account the specific lighting

conditions of the imaging environment, decreasing their adaptability to such dynamics conditions.

In this paper we propose a method that, through a learning stage, takes into account the typical

noisy regions propitiated by the imaging environment to select the higher discriminating features.

Our experiments were performed on two well known iris image databases (CASIA and UBIRIS) and

show a significant decrease of the error rates in the recognition of iris images corrupted by noise.

Keywords: Iris Recognition, Feature Selection, Biometrics.

1 Introduction

Iris recognition has been successfully applied in such distinct domains as airport check-in or

refugee control. However, for the sake of accuracy, current systems require that subjects stand

close (less than two meters) to the imaging camera and look for a period of about three seconds un-

til the data is captured [5]. This restricts the range of domains where iris recognition can be applied,

namely under natural lighting environments. In this context, the overcome of these imaging con-

strains has motivated the efforts of several authors and deserves growing attention by the research

community. Although some of the published iris recognition approaches perform noise detection

to avoid that noisy components of the biometric signatures are taken into account, we believe that

highly heterogeneous lighting environments (specially under natural light) lead to the appearance

of regions which, even for humans, are very difficult to classify as ”noisy” or ”noise-free”. Figure 1

illustrates some of the noise factors that result of less constrained image capturing environments. In

figure 1b large iris regions obstructed by reflections (lighting and specular) can be observed, some

of them very difficult to distinguish from the noise-free ones.

Moreover, traditional feature selection approaches are difficult to apply, due to the huge number

of features and to their empirically proved statistical independence (Daugman [2]). Due to these

facts, in this paper we propose a method that operates after the physical installation of the image

International Conference on Computational Intelligence and Multimedia Applications 2007

0-7695-3050-8/07 $25.00 © 2007 IEEE
DOI 10.1109/ICCIMA.2007.119

301

International Conference on Computational Intelligence and Multimedia Applications 2007

0-7695-3050-8/07 $25.00 © 2007 IEEE
DOI 10.1109/ICCIMA.2007.119

301

Authorized licensed use limited to: b-on: UNIVERSIDADE DA BEIRA INTERIOR. Downloaded on March 12,2021 at 11:53:45 UTC from IEEE Xplore.  Restrictions apply. 



(a) Iris image with good quality. (b) Noisy iris image.

Figure 1. Comparison between a good quality image and a noise-corrupted one.

Figure 1a was captured under high constrained imaging conditions and is com-

pletely noise-free. Oppositely, figure 1b incorporates several types of noise that

result of less constrained imaging conditions and significantly increase the chal-

lenges of the recognition task

capturing framework and selects the higher discriminating features, according to the specific imag-

ing characteristics of the respective environment. At first, a learning set of iris images is captured,

being expected that it reflects the typical characteristics (predominant noisy regions) of the images

captured within the environment. Further, the candidate features are extracted from these images

and used in the computation of a correspondent quality measure. This value is used as the objec-

tive function of a filter subset selection process. Our experiments showed a substantial increase in

the separability between the intra- and inter-class comparisons when the 30% features with highest

quality values of the learning data are selected, contributing for the increase of the recognition’s

robustness.

The remainder of this paper is organized as follows: section 2 briefly summarizes some of the

most cited iris recognition methods. A detailed description of the proposed method is given in

section 3. Section 4 reports the experiments and results and, finally, section 5 concludes this paper.

2 Iris Recognition

In spite of the specificities of the different proposals, typical iris recognition algorithms share the

structure given in figure 2.

Figure 2. Typical stages of iris recognition.

The initial stage deals with iris segmentation, which is usually performed through the use of a
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rigid or deformable iris template (e.g., Daugman [2]) or through its boundary (e.g., Wildes [8]).

In order to compensate the variations in pupils size and in the image capturing distances, the seg-

mented iris region is translated into a double dimensionless polar coordinate system, through a

method (Daugman Rubber Sheet) proposed by Daugman [2]. Regarding feature extraction, pub-

lished approaches can be divided into three major categories: phase-based methods (e.g., [2]), zero

crossing methods (e.g., [1]) and texture analysis based methods (e.g., [8]). Finally, the compari-

son between iris signatures is performed and produced a numeric dissimilarity value. If this value

is higher than a threshold, the system outputs a non-match, meaning that each signature belongs

to different irises. Otherwise, the system outputs a match, meaning that both signatures were ex-

tracted from the same iris. Here, it is usual to apply distance metrics (Hamming [2], Euclidean [3],

Weighted Euclidean [6]) or methods based on signal correlation [8].

3 Proposed Method

The problem of feature selection is to take a set of candidate features and select a subset that

best performs under some classification system, usually through the maximization of an objective

function J(.), either a ”filter” or a ”wrapper”. This process reduces the cost of classification, by

reducing the number of features that must be collected, and provides better results due to the finite

sample size effects.

The rationale behind the proposed filter objective function is to valuate features that respectively

maximize and minimize the dissimilarity values of the inter- and intra-class signature comparisons.

Thus, the distance between feature values increases the respective quality value (1) if they were

extracted from images of different irises and decreases it if the features were extracted from images

of the same iris.

In the following discussion we will use F p
i to denote a feature set extracted from the ith iris

image of the subject p. Also, fp
i,j denotes the jth feature of the ith feature set extracted from the

iris of subject p, F p
i = {fp

i,1, . . . , f
p
i,t}. Let S = {F p1

1 , . . . , F pk
n } be the set of learning feature sets

extracted from n images of k subjects. The quality value q(.) of each candidate feature i is given

by: q(i) : {1, . . . , t} → R:

q(i) =

n−1
∑

j=1

n
∑

k=j+1

dist(fp
j,i, f

s
k,i)

(tI − tE) δp,s + tE
(1 − 2 δp,s) (1)

where dist(., .) is the function that gives the features dissimilarity (e.g., Hamming or Euclidean

distance), δp,s is the Kronecker delta and tI and tE are the total of intra- and inter-class comparisons

between elements of S.

Let T and D be respectively the candidate and selected feature sets, D ⊆ T . Also, let |.| denote

the set cardinality, such that |T | = t and |D| = d. The feature selection filter objective function of

X = {D1, . . . , Dd} is represented by J(X). Considering that higher values of J(.) indicate better

feature sets, the problem is to find a subset D ⊆ T such that |D| = d and maximizes the objective

function J(.):

J(X) =

d
∑

i=1

q(Di) (2)

As above stated, it should be stressed that the proposed objective function assumes the features

statistical independence, which means that J(.) is simply maximized by the set of the d features
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with highest quality values (1). In the following section we describe our experiments to find the

optimal value of d.

4 Experiments and Results

In our experiments we used the recognition method described by Daugman [2], essentially due

to the facts of being the basis for all the commercially deployed iris recognition systems and act as

main comparison term in the iris recognition literature. We compared the error rates obtained when

using the feature set with 2048 components, as originally described, and our proposal. The method

starts by the iris segmentation, through an integro-differential operator that searches over the image

domain for the maximum in the blurred (by a Gaussian kernel) partial derivative, regarding increas-

ing radius of the normalized contour integral of the image along a circular arc. To compensate the

varying size of the pupil and of capturing distance, we translated the images into a dimensionless

polar coordinate system, according to the process known as the ”Daugman Rubber Sheet” [2]. Fea-

ture extraction was accomplished through the use of bidimensional Gabor filters. The real parts of

the result were truncated to zero volume (to achieve illumination invariance). For each resulting

bit the sign of the real and imaginary parts from quadrature image projections were analyzed and,

through quantization, assigned binary values. The feature comparison was performed through the

Hamming distance.

4.1 Data Sets

There are presently 7 public and freely available iris image databases for biometric purposes:

Chinese Academy of Sciences (CASIA) [4], Multimedia University (MMU), University of Bath

(BATH), Palacký University Olomouc (UPOL), Iris Challenge Evaluation (ICE), West Virginia

University (WVU) and University of Beira Interior (UBIRIS) [7].

CASIA database is by far the most widely used for iris biometric purposes. However, its im-

ages incorporate few types of noise, almost exclusively related with eyelid and eyelash obstruction,

similarly to the images of the MMU and BATH databases. UPOL images were captured with an

optometric framework, obtaining noise-free images with extremely similar characteristics. ICE and

WVU images contain several blurred and off-angle images, which are noise factors that are out of

the scope of this work. Oppositely, UBIRIS database was built with the objective of simulate non-

cooperative image capturing. This explains the higher heterogeneity of its images and the existence

of large noisy regions (iris reflections and obstructions).

The aforementioned characteristics led us to choose UBIRIS and CASIA databases for our ex-

periments, analyzing the recognition accuracy both in highly (UBIRIS) and less noisy (CASIA)

imaging environments. We selected 400 images from each database, belonging to 40 subjects.

Further, we divided each data set into two subsets. The first ones - UBIRIStr and CASIAtr -

were used as learning data, to compute the features quality value (1) and perform feature selection.

The later - UBIRIStt and CASIAtt - to evaluate the recognition’s accuracy. As illustrated by

figures 3a and 3b, images of the UBIRIS database contain severe iris obstructions by eyelids and

eyelashes in the lower and upper iris regions (regions 1) and specular and lighting reflections pre-

dominant in the left and right iris extremes (regions 2). Images of the CASIA database are less

noisy and typically contain small iris obstructions due to eyelids and eyelashes in the lower and

upper iris regions (regions 1).
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(a) Typical noisy re-

gions in the tested iris

images.

(b) Correspondent noisy regions in

the segmented and normalized iris

images.

(c) Quality value of the candidate
features of the UBIRIStr data
set.

(d) Quality value of the candidate
features of the CASIAtr data set.

Figure 3. Correspondence between the predominant noisy regions of the data set

images and the obtained features quality value (1). Brightest pixels correspond to

high quality features. Note that the features quality values reflect the typical noisy

regions of the correspondent data set images.

(a) FR-test values. (b) Equal Error Rate

(EER).

(c) Error Area Under

the DET Curve.

(d) FRR with FAR=0. (e) DET curves

obtained in the

CASIAtt data set

(f) DET curves

obtained in the

UBIRIStt data set

Figure 4. Comparison between the results obtained by our proposal and the original

Daugman’s recognition method. The continuous and dashed lines of figures 4a-4d

give the results obtained in the UBIRIStt and CASIAtt data sets, when varying the

cardinality of the selected feature set. Figures 4e and 4f compare the DET curves

obtained when using 100% (2048) and the 30% (614) features with highest quality

values (1) in the biometric signatures comparison.

4.2 Results

According to the process described in section 3, we extracted the candidate features from all im-

ages of the learning data sets and we computed each feature’s quality value (1). As the used feature

extraction method (Gabor wavelets decomposition) allows the simultaneous scale-space data repre-

sentation, it is possible to associate each feature with a pixel of the original data. Figures 3c and 3d

illustrate the quality of the candidate features obtained in the UBIRIStr and CASIAtr data sets.

Here, each pixel intensity I(p) is given by
q(p)−minq

maxq−minq
∗ 255, where q(p) is the feature quality value

given by(1). For the purpose of visualization, minq and maxq are, respectively, the minimum and

maximum quality values. It can be observed that figure 3d is brighter and its intensity values are

more homogeneous than those of figure 3c (noisiest data set). Interestingly, several dark regions

can be observed, whose correspond to features that were extracted from the typical noisy regions

of the learning set images and have lowest quality values. According to the proposed method, these

features should not be taken into account in the comparison biometric signatures.

In order to find the optimal value of d, we varied the cardinality of the selected feature set

between 10% and 90% of the number candidate features (t). Figures 4a-4d contain the results.

Figure 4a contains the values for a Fisher-ratio (FR) test given by τ = (µE − µI)/
√

σI
2

tI
+ σE

2

tE
,
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where µI and µE indicate the mean of the intra- and inter-class comparisons. σI and σE indicate

the respective standard deviation and tI and tE are the number of intra- and inter-class comparisons

between iris signatures. Figures 4b and 4c respectively contain the equal error rates (EER) and the

areas of the region under the detection error tradeoff curves (DET). Finally, figure 4d gives the false

rejection rates when the false acceptances were minimized. In all these figures the horizontal axis

give the proportion between d and t. As the value of d decreased we observed an increase in the

separability between the intra- and inter- class comparisons (figure 4a). However, when d is below

30% of t, this has no correspondence in the error rates, as the lowest error rates were obtained when

d/t=0.3 (using 614 features). In this case we obtained an EER of about 6% in the highly noisy

images of the UBIRIS data set. This must be considered an achievement, as the correspondent EER

of the original method was above 12%.

Finally, figures 4e and 4f compare the DET’s obtained by the Daugman recognition method when

using the complete feature set (dashed lines) and the 614 features (continuous lines) with highest

quality features in the biometric signatures comparison. A significant decrement of the error rates

can be observed, which led us to conclude that our proposal contributes for the adaptability of the

recognition system to the typical image noisy regions and increases the recognition robustness to

noise.

5 Conclusions

Under less constrained lighting environments, it is expected that the captured iris images contain

several types of noise. Moreover, the predominant noisy regions are strongly determined by the

environment lighting conditions. Due to the huge number of features, traditional feature selection

methods are difficult to apply. According to these facts, we proposed a method that takes into

account (through an images learning set) the typical characteristics of the captured images in the

environment to compute a quality measure for each candidate feature.

This value was used as objective function of a feature subset selection process that determines

the features that must be taken into account within the respective environment. Our experiments

showed that this simple process increases the adaptability of the recognition system to the specific

imaging environment. Lastly, when finding the optimal number of selected features, we obtained

the lowest error rates when 30% of the highest quality features are selected (614 features). In

this situation, when compared to the original recognition method, our proposal decreased the error

rates over 50% in the recognition of highly noisy iris images and contributed for the recognition

robustness to noise.
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