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Abstract: Defect detection is a crucial part of the pipeline in many industries. In the textile industry, 1

it is especially important, as it will affect the quality and price of the final product. However, it is 2

mostly performed by human agents, who have been reported to have poor performance, along with 3

a costly and time-consuming training process. As such, methods to automate the process have been 4

increasingly explored throughout the last 20 years. While there are many traditional approaches to 5

this problem, with the advent of deep learning, machine learning-based approaches now constitute 6

the majority of all possible approaches. Other articles have explored traditional approaches and 7

machine learning approaches in a more general way, detailing their evolution throughout time. In 8

this review, we will summarize the most important advancements of the last 5 years, and focus mostly 9

on machine learning-based approaches. We also outline the most promising avenues of research in 10

the future. 11

Keywords: Fabric Defect Detection; Deep Learning Based Textile Inspection; Computer Vision 12

Quality Control; Defect Classification. 13

1. Introduction 14

Clothing is a basic requirement for human life, and the textile industry is as old as 15

civilization. Fabric is the most important component of this industry, and nowadays, its 16

production has been mostly mechanized and automated. Defects occur during this process, 17

and there are several inspection stages at many points to find them and fix them if possible, 18

such as the one represented in Figure 1. This inspection is often done physically and 19

visually, which ends up having many drawbacks [1]. The cost, monetary and time-wise 20

of training inspectors for this role is steep, and it is estimated that these human operators 21

have an accuracy of 60-75%, with this accuracy decreasing with longer work time. As such, 22

it becomes desirable to automate this process, to both increase defect detection rates and 23

decrease labor cost [2]. 24

Fabric defect detection is not a trivial computer vision task. For starters, there is quite 25

a large amount of defects to detect, with up to 235 different types of defects [3]. Some of 26

the categories of these defects vary significantly according to their characteristics, while 27

others vary slightly, which makes it difficult to apply general algorithms to this problem. 28

A brief categorization can be seen in Figure 2. Furthermore, not all defects occur at the 29

same rates, with some rare defects barely occurring at all, resulting in unbalanced datasets, 30

which increases the difficulty in using supervised methods. Additionally, not all types of 31

fabric have the same texture, with the same types of defects occasionally looking different 32

in different types of fabrics, further compounding the problem [4]. 33

Several surveys have been previously conducted in this area. We have collected the 34

most relevant ones and summarized them in Table 1. We will briefly analyze them, and 35
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Figure 1. Typical final inspection stage, from a textile factory in Portugal. Factories in many countries
have a workflow and equipment similar to this one.

Figure 2. Some examples of fabric defects, in different fabric types. While some defects are easily
spottable, others are of smaller size and harder to discern. Images acquired on site at textile factory in
Portugal.

then explain in which ways our work differs. We collect data regarding the year the study 36

was published, the authors, how many references each work has, the range in time from 37

which they obtain their articles, whether they include traditional approaches, machine 38

learning-based approaches and/or deep learning-based approaches. 39

Song et al [5] did the first work on the topic of textile defect detection. [5] presents a 40

very introductory glance at the topic. Sixteen years later, Kumar et al presented an overview 41

of more recent methods, dividing these between statistical approaches, spectral approaches, 42

and model-based approaches [6]. Mahajan et al presented more approaches following the 43

same taxonomy one year later in their work [7]. 44

Ngan et al created the most cited review in this area two years after. This work 45

built upon the previously established taxonomy, and introduced structural approaches 46

and learning-based approaches. The advent of deep learning had not yet arrived, so the 47

learning-based approaches section was somewhat sparse, but nonetheless, this approach 48

taxonomy has not changed much since this work was published. The authors also introduce 49

other approaches, such as hybrid approaches, or motiff approaches, which are sparsely 50

found in the literature and mostly not covered by other reviews [8]. 51
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Table 1. Summary of analyzed survey articles.

Year Authors References Article
Range Traditional ML DL

1992 Song et al
[5] 27 1992 Y Y N

2008 Kumar et
al [6] 162 1956-2007 Y Y N

2009 Mahajan et
al [7] 122 1966-2009 Y Y N

2011 Ngan et al
[8] 139 1980-2011 Y Y N

2014 Habib et al
[9] 31 1988-2012 N Y N

2016 Hanbay et
al [4] 99 1973-2016 Y Y Y

2017 Patil et al
[10] 56 1979-2011 Y N N

2018 Oni et al
[11] 35 2003-2016 Y Y N

2020 Czimmermann
et al [12] 221 1973-2020 Y Y Y

2020 Rasheed et
al [1] 89 1996-2020 Y N Y

2021 Li et al [13] 125 1999-2021 Y Y Y

2023 Kahraman
et al [14] 107 1986-2022 N N Y

Habib et al presented a survey focused entirely on classifiers such as Support Vecotr 52

Machines (SVMs) or Artificial Neural Networks (ANNs), without focus on traditional 53

techniques [9]. Hanbay et al covered the entire previously defined taxonomy in detail, 54

with focus on how to collect data from a hardware perspective, anmd with a brief look at 55

deep neural networks, as they were starting to surface in the literature around that time 56

[4]. Patil and Oni et al follow the footsteps of the previous authors, but do not cover deep 57

learning-based approaches either, as these were still nascent at the time [10] [11]. 58

In 2020 and onwards, more surveys start to be created in this area, and all of the 59

ones created in this date range cover deep learning-based approaches. Czimmerman et al 60

provide a comprehensive review of many of the recent developments across all approaches 61

[12]. Rasheed et al use a different taxonomy, yet nonetheless cover all of he previously 62

defined approaches [1]. 63

Li et al use the previously defined taxonomy, and, as deep learning approaches become 64

more stardardized, has a section on one-stage and two-stage detectors, as they have become 65

more widespread throughout the literature at this point [13]. Finally, Kahraman et al focuses 66

exclusively on deep learning methods, to the detriment of traditional methods, arguing that 67

the former have now become the dominant approach and are thus worthier of exclusive 68

attention [14]. 69

Due to the rapid pace of the area, and the vast volume of articles released across all 70

areas of deep learning, we believe that our survey is well timed to follow up on the work of 71

the previously described authors. While Kahraman et al provided a comprehensive review 72

of deep learning-based approaches, more approaches still have been devised thorughout 73

these last two years, and in addition to the approaches, we mean to cover traditional 74

approaches as well, to ascertain whether they still pose a promising avenue of research, 75

or whether these approaches should be relegated to the background in favor of deep 76

learning-based approaches, as recent trends suggest. 77

Our main contributions are: 78
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• Summarizing the most important advancements in fabric defect detection over the 79

last 5 years, with a focus on machine learning-based approaches. 80

• Addressing the limitations and challenges in fabric defect detection research, such as 81

the lack of standardized datasets, the dominance of deep learning-based approaches, 82

and issues with reproducibility. 83

• Proposing future trends and research directions to address these challenges and ad- 84

vance the field of fabric defect detection, including exploring traditional approaches, 85

improving dataset quality, and considering edge device applications for defect detec- 86

tion in factory settings. 87

2. Taxonomy of fabric defect detection 88

There are multiple ways of grouping different types of approaches. One such way 89

consists of motif-based approaches and non-motif-based approaches. Motif-based methods 90

compare recurring motifs to detect defects, and as such require a defect-free ground truth of 91

the motifs in a fabric. That ground truth is very hard to acquire in industry conditions, and 92

as such, these approaches are much less widely used than non-motif-based approaches [15]. 93

Therefore, in this survey, we focus on non-motif-based approaches, which have undergone 94

far more significant research. 95

Non-motif-based approaches, due to their very general nature, can be further sub- 96

divided into other categories. These categories vary according to the researchers, but 97

generally, are divided as follows: 98

• Statistical approaches; 99

• Spectral approaches; 100

• Model-based approaches; 101

• Structural-based approaches; 102

• Learning-based approaches. 103

However, due to the recent dramatic interest in artificial intelligence (AI) and deep 104

learning (DL), some authors [16] have started categorizing the former 4 approaches as 105

traditional approaches, and the later one as a separate approach, which is subdivided into: 106

• Classical machine learning methods; 107

• Deep learning methods; 108

We adopt this categorization, and will cover each of these types in the following 109

subsections. However, our main focus will be on learning-based approaches, as these are 110

the main focus of research in recent years, with the rising interest in deep learning. 111

3. Traditional methods 112

Here we outline the methods commonly referred to as traditional methods. These 113

methods often consist of simple mathematical operations performed on the fabric images, 114

and these techniques are often commonly used across many areas of image processing. 115

These methods are now known as traditional as they do not involve the use of machine 116

learning or deep learning. 117

3.1. Statistical approaches 118

Statistical approaches analyze the spatial distribution of gray pixel values in an image. 119

These approaches generally comprise histogram statistics, auto-correlation functions, co- 120

occurrence matrices, local binary patterns (LBP), and mathematical morphological features. 121

While there are more approaches, we believe these are representative of the area [17]. 122

3.1.1. Histogram statistics 123

A histogram displays statistical information of gray-level pixel distribution in an 124

image. Some commonly used histogram statistics are range, mean, standard deviation, 125

variance, and median. There are also histogram comparison statistics, such as L1/L2 126

norm, Mallows or EMD distance, Bhattacharyya distance, Matusita distance, Divergence, 127
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Chi-square, and Normalised correlation coefficient, which can be used as texture features 128

[18]. Anomalous variations in these statistics can then be tracked, and usually correspond 129

to defect in the fabric. A schematic representation of this is seen in Figure ??, from [4]. 130

This type of approach is considered to be simple, and not very taxing computationally, 131

but has shown weak performance in detecting small defects [19] [20]. 132

3.1.2. Co-occurrence matrices 133

Co-occurrence matrices, by which we mean spatial grey level co-occurrence matrices 134

(GLCMs) are statistical methods that measure spatial relationships of grey-scale pixels into 135

co-occurrence matrices. These functions calculate how often specific pairs of pixels, with 136

certain values and spatial relationships occur in an image, given a displacement vector, and 137

extract texture features from these matrices [21]. 138

This method has been used multiple times across a wide variety of tasks [22] [23]. 139

However, this method shows lower performance compared to other alternatives, and 140

overall is quite computationally demanding [12]. 141

3.1.3. Auto-correlation functions 142

Auto-correlation functions measure spatial frequency and depict maxima at multiple 143

locations corresponding to the length (or width) of the repetitive primitive of an image [24]. 144

This method is used primarily in textures with a repetitive nature, such as textiles, and are 145

unsuited to more erratic textures [25]. 146

While there are other works that use this method as a foundation, this method does 147

not appear to be popular in the literature in isolation, as Hoseini et al are the only authors 148

who used this method directly, to the best of our knowledge [26]. 149

3.1.4. Local binary patterns 150

An LBP is a texture operator, introduced by Ojala et al [27] as a shift invariant com- 151

plementary measure for local image contrast. It uses the gray level of a sliding window’s 152

central pixel as a threshold against surrounding pixels, and outputs a weighted sum of 153

thresholding neighbouring pixels. It has been applied in defect detection with different 154

types of surfaces, such as ceramic [28], wood [29], and OLED panels [30]. 155

Some authors have achieved success with this approach in the area of fabric defect 156

detection. Zhang et al used an approach combining GLCM and LBP methods to extract 157

defect features to train a BP Neural Network, which achieved a 97.6% classification accuracy 158

on the TILDA dataset [31]. This texture operator is relatively insensitive to changes in 159

illumination and image rotation, and it has a low computational cost, but reportedly has 160

lower performance than other alternatives [32]. 161

As of the last 5 years, Makaremi et al used an approach with a modified LBP, using a 162

clustering and thresholding step, and achieving a detection rate of 91.86% [33]. Lizarraga- 163

Morales et al used this method, along with a rule-based classification system with higher 164

than state of the art results [34]. Khwakhali et al combines this method and gray-level 165

co-occurence, achieving accuracy rates up to 83.9% [35]. Li et al created a new operator 166

based on the LBP, the multidirectional binary pattern (MDBP), which compares gray-level 167

differences between neighboring pixels and extracts the detailed distribution of textures in 168

local regions [36]. Talab et al proposed a new rotation-invariant mapping method, which 169

extends nonuniform patterns to remove more discriminative features, and achieved better 170

classification accuracies than baseline LBPs [37]. 171

3.1.5. Mathematical morphological features 172

Mathematical morphology performs geometric description and representation of 173

a shape by extracting useful components from an image. This is done through basic 174

operations such as expansion, erosion, opening and closing [38]. It is used across a wide 175

variety of fields, such as medicine [39], or civil engineering [40]. 176
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There are many different approaches using this method to detect defects in fabric, 177

with defect detection rates ranging from 80.3% to 98% [41] [42] [43] [44] [45]. This method 178

is quite sensitive to defect sizes and shapes, and effective for segmentation tasks, but it is at 179

its most effective when performed on patterned fabric, and quite ineffective otherwise [46]. 180

In the last 5 years, few authors have used this method. Song et al used a method based 181

on the membership degree of each fabric region, and used a thresholding method and 182

morphological processing to discover the location of defects [47]. Jiang et al proposed a 183

method using a Roberts cross operator with a mathematical morphology approach [44]. 184

Liu et al use Canny and morphological processing to segment defects [48]. Beyond these, 185

few of these types of methods were discovered in the literature. 186

3.2. Spectral approaches 187

Spectral approaches employ spatial and frequency domain features, with spatial 188

features being used to discover a defect’s location, while frequency features help determine 189

whether a defect is present. These approaches work by firstly extracting texture primitives, 190

and then generalizing the obtained texture with spatial layout rules. These approaches 191

are widely used in the literature, but are only effective when used on textures with a high 192

degree of periodicity, and are ineffective otherwise [49]. 193

We will cover the most common approaches of this type, namely: Fourier transform, 194

wavelet transform, Gabor transform and filtering methods. 195

3.2.1. Fourier transform 196

The Fourier transform, derived from the Fourier series, involves converting signals 197

from a spatial domain to a frequency domain [50]. As the spatial domain is often noise- 198

sensitive, the frequency domain is often a better alternative towards finding defects [51]. 199

There are many works that use this technique across many types of defects, in different 200

materials, such as ceramics [52], electronic surfaces [53], solar cells [54], and other industrial 201

images [55]. 202

Regarding fabric defect detection, multiple studies used this approach, for many 203

different types of fabric, such as plain cotton fabric [56], cotton and wool [57] [58], or woven 204

denim [59]. 205

As of the last 5 years, however, no approach was found to exclusively use this approach. 206

Works such as [60] and [61] use the Fourier transform as a complement to other methods, 207

but beyond that, this technique appears to have fallen out of use. 208

3.2.2. Wavelet transform 209

The wavelet transform technique was developed as an alternative to the Fourier 210

transform, to achieve multi-resolution signal decomposition. This transform converts 211

an image into a series of wavelets, small waves of varying frequency, which provide 212

information on horizontal, vertical and diagonal directions in that given image [62] [63]. 213

There are many different variations of this technique in the literature for fabric defect 214

detection, including Fuzzy Wavelet Analysis [64], multiscale wavelets [65], wavelet recon- 215

struction [66] [67], and adaptive level-selection wavelet transforms [68], with detection 216

rates varying from 85% to 97.5%. 217

Contemporarily, wavelet transform is mostly used as an intermediate image pre- 218

processing step or as a feature extractor for neural networks [69] [70] [71]. There are still 219

works which mainly use this technique, such as Saleh et al, which uses à troux wavelets to 220

extract approximate sub-images [72]. Hu et al devised an unsupervised approach using 221

un-decimated wavelet decomposition and statistical models to build feature maps, which 222

are then analyzed for defects with the log-likelihood function [73]. Beyond that, other 223

works, such as [74], [75] use this method as a complement or comparison to other methods. 224
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3.2.3. Gabor transform 225

Gabor filters are a well-known method for analyzing textured images, using a joint or 226

spatial-frequency representation. These filters are a Gaussian distribution function, and 227

can be customized with different scale and angle values according to the analyzed texture 228

[4]. This approach attempts the optimal joint localization in spatial and spatial frequency 229

domains [76]. 230

This approach has been used in many different ways throughout the past decades. 231

These can be grouped in 2 main categories. In the first, several filters, stored in certain 232

frequencies and orientations cover all occurring frequencies in an image, computing their 233

correlation. This is computationally intensive, but achieves high recognition quality [77]. 234

The second approach, which is far more popular, revolves around implementing filters opti- 235

mally designed to recognize defects in a desired area. It is less computationally demanding, 236

but requires excellent parameter setting, which is quite hard to achieve [78]. 237

In regards to fabric defect detection, this approach has been used many times over the 238

last decades. Kumar et al first used this approach to detect most common types of defects, 239

partially or fully, using horizontal or vertical projection signals [79]. Jing et al uses genetic 240

algorithms to adjust Gabor filters to detect defects in patterned fabric, achieving high defect 241

detection accuracy with lower computational costs [80]. Bissi et al use a complex symmetric 242

Gabor filter bank and Principal Component Analysis (PCA), achieving defect detection 243

rates of 98.8% and false rates between 0.2-0.37% [81]. Hu uses an elliptical Gabor filter, 244

tuned with genetic algorithms, followed by a gray-level thresholding process, to identify 245

defects, with accuracies of 95% [82]. 246

In recent years, most of the research in this area employing Gabor filters follows the 247

second-mentioned approach and optimizes Gabor filters with new algorithms, such as the 248

Cuckoo optimization algorithm [83] or the Random Drift Particle Swarm Optimization 249

(RDPSO) algorithm [20]. New approaches, however, are using Gabor filters less as a 250

primary means of defect detection, and more as a feature extractor for machine learning 251

methods, like Random Decision Forests [74], or neural networks, such as multipath CNNs 252

[84] or Faster R-CNNs [85]. 253

3.3. Model-based approaches 254

Model-based approaches revolve around the construction of an image model that 255

can both describe and synthesize texture. These approaches are most effective with fabric 256

images with stochastic surface variations, or for randomly textured fabrics for which 257

statistical or spectral approaches are ineffective [7]. 258

While there are many different types of approaches, the literature is mostly focused 259

on autoregressive models and Markov Random Fields (MRFs). We now briefly cover each 260

of these in their own subsections. 261

3.3.1. Autoregressive models 262

These models characterizes the linear dependence of pixels in any given textured 263

image. As such, to compute it, one is required only to solve a system of linear equations, 264

which requires much less computational time, making this a widely used technique for 265

many areas [86]. 266

However, this technique does not seem to be highly used for fabric defect detection. 267

Bu et al used a Burg-algorithm-based Auto-Regressive spectral estimation model, with 268

a Support Vector Data Description as a detector, with low false alarm rates [87]. Zhang 269

et al use autoregressive models along with a variational autoencoder, with competitive 270

results [88]. Few other such works are seen in the literature, suggesting this might not be a 271

promising avenue of research. 272
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3.3.2. Markov Random Fields 273

Markov Random Fields (MRFs) approaches model context dependent entities, such as 274

pixels, which depend on their neighboring pixels, by combining statistical and structural 275

information. They are often used in segmentation [89] or classification problems [90]. 276

Cohen et al. used Gaussian MRFs to model defect-free fabric texture, using statistics 277

derived from the GMRF model as a hypothesis testing problem. They achieved a high 278

detection success rate, but with questionable reliability, due to a limited dataset of samples 279

[91]. Zhang et al used an adaptive weighting function to intelligently segment jacquard 280

warp-knitted fabric images [92]. 281

In recent years, very few works were found exploring this approach recently, which 282

casts doubt regarding its applicability in this area. Xu et al used a similar approach recently, 283

but the results were not conclusive regarding the obtained accuracy values [93]. Chang et al 284

proposed a bilayer MRF approach, which reduces original fabric image samples to obtain a 285

constraint layer, which can be used to locate the defects, with state of the art results [94]. 286

3.4. Structural-based approaches 287

Structural approaches consider the fabric texture as a composition of texture elements, 288

referred to as texture primitives, with a certain spatial arrangement, according to arrange- 289

ment rules. The goal for these approaches then is to extract the texture primitives, which can 290

consist of individual pixels, uniform gray-level regions, or line segments, and from there 291

infer their spatial arrangement rules, by learning their statistical properties or modelling 292

geometric relationships. This approach is considered more effective in regular textures [95]. 293

Due to its more general character, it is somewhat harder to seek approaches such 294

as this in the literature. Older approaches such as Chen et al use a skeleton structure to 295

describe a model [96], or Bennamoun et al use a texture blob model [97]. 296

More recent methods include Tolba et al, who developed a Multiscale Structural 297

Similarity Index (MS-SSIM)-based method, with a 99.1% detection rate [98]. Cao et al, who 298

develop a new Prior-Knowledge Guided Least Squares Regression (PG-LSR) method, but 299

the results were unclear [99]. Jia et al proposed a method based on lattice segmentation, 300

dividing the image into non-overlapping lattices, which are then compared to defect-free 301

benchmarks, named template statistics, with lattice similarity scores, to determine the 302

presence of defects [100]. 303

Overall, this method does not appear to be very popular, or it is so general in nature 304

that many methods from other categories could ostensibly be grouped in this one. 305

4. Deep Learning-based Methods 306

These approaches are based on machine learning algorithms, as well as neural net- 307

works. Recently, due to the immense growth achieved by AI across all areas of research, 308

these have become the most common method across the literature in the area, and this 309

growth is likely to continue [14]. 310

There are many different approaches in this area, given the wide selection of neural 311

network architectures available. Due to the immense volume of literature available on 312

this very topic, which would allow us to create a whole other state-of-the art review solely 313

focused on it, and the already dense nature of this work, we were unable to fully review 314

every article, and relied on previous surveys in the area to determine the major trends in 315

this area of the literature. 316

Overall, as mentioned previously, the wide variety of deep learning neural network 317

architectures makes it very hard to summarize the entire area. However, we can clearly 318

identify two trends, which seem to hold for the last decade. 319

The first is the use of Convolutional Neural Networks (CNNs), which are composed 320

of multiple convolutional layers, mixed in with subsampling or pooling, performing 321

increasingly more complex feature extraction between the input and output layers, until 322

reaching a final classification layer [13]. This appears to be the most commonly used 323

approach in the reviewed articles. 324
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The second is the use of generative models, which are neural networks trained to 325

approximate high-dimensional probability distributions using a large number of samples. 326

Their architectures involve numerous hidden layers. These models are usually used for 327

generative tasks, such as finishing a word at the end of a sentence, or generating images 328

based on several instances. There are several variants of this approach, such as Generative 329

Adversarial Models (GANs), or autoencoders [101] [102]. These are the second most 330

popular approach. 331

While there are more deep learning architectures, these two are by far the most 332

explored areas of the literature, which makes them the most potentially viable path towards 333

solving our current problem. As such, this state-of-the-art will focus more on these methods. 334

As datasets are crucial in any supervised deep learning methods, we will cover the datasets 335

we encountered for this area as well. Each of these topics will be approached in their own 336

subsection ahead. 337

4.1. CNN-based approaches 338

The inner workings of CNNs have been discussed before, and have been covered in 339

detail in other sources, such as [103]. As such, we will mostly focus on converting the most 340

important latest articles, and summarizing their main contributions. 341

Jing et al used a LeNet architecture, achieving between 95.9-98.01% detection rate on 342

the TILDA, Hong Kong, and a private dataset, compared to other architectures, such as 343

AlexNet, VGG16, and others [104]. 344

Jeyaraj et al used a multi-scaling CNN, by averaging the results of 3 CNN architectures, 345

achieving 96.5% accuracy, and 96.4% sensitivity on the TILDA dataset [105]. The same 346

authors later tried using a ResNet512 architecture, achieving an average accuracy of 96.5% 347

and a precision of 98.5%, outperforming Support Vector Machines (SVMs) and Bayesian 348

classifiers [106]. 349

Sun et al used an end-to-end multi-convoluted model, based on gray histogram back- 350

propagation, achieving an average detection accuracy of 96.12% on the TILDA dataset 351

[107]. 352

Almeida et al used a custom CNN with false negative (FN) reduction methods, achiev- 353

ing an accuracy of 95% against a self-made dataset [108]. 354

Zhao et al used a visual long-short-term memory-based model, which involved a 355

shallow CNN, achieving accuracy values ranging from 95.73-99.47% [109]. 356

Durmusoglu and Kahraman used a VGG19 CNN model, and achieved 94.62% accuracy 357

against the TILDA dataset [110]. The same authors later switched to capsule networks 358

instead, a new alternative to CNNs that have become popular for other task types recently, 359

and achieved 98.7% accuracy [111]. 360

Jing et al used a Mobile-Unet model, using MobileNetV2 as an encoder and five 361

deconvolutional layers as a decoder. It achieved accuracy values between 92-99% on the 362

Hong Kong dataset, and a self-made one [112]. 363

4.1.1. Object detection 364

Many approaches to this problem are based on object detection approaches across 365

other domains. These approaches are often based on one-stage detectors and two-stage 366

detectors. One-stage detectors such as Single Shot MultiBox Detector (SSD) [113] or You 367

Only Look Once (YOLO) [114] treat object detection as a regression problem, and learn class 368

probabilities and bounding box coordinates directly. Two-stage detectors such as R-CNN, 369

Fast R-CNN [115], Faster R-CNN [116] or Mask R-CNN [117] approach the problem in two 370

stages, using a Region Proposal Network (RPN) in the first stage to generate regions of 371

interest, which are sent to the next stage for classification and bounding box regression. 372

One-stage detectors are often much faster than two-stage detectors, but have lower accuracy 373

rates [118]. 374

Many of the approaches covered in the literature in this area consist of taking one 375

the former types of approaches and performing changes to their architecture. As such, 376
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to better compartmentalize each approach, we found it best to consider one-stage and 377

two-stage-based approaches separately, in each of the following subsections. 378

One-stage detectors Many works consist of making alterations to YOLO models. 379

Liu et al used a lightweight CNN model, named YOLO-LFD, achieving a detection 380

accuracy of 97.2%, competitive over other YOLO models, with a much lighter computational 381

load [119]. The same authors later used a new weakly-supervised learning framework, 382

named DLSE-Net, to classify fabric defects with 91% accuracy, which, while worse than 383

the previously mentioned approaches, outperformed other weakly-supervised approaches 384

[120]. 385

Liu et al implement a new Spatial Pyramid Pooling (SPP) module, with Maxpool 386

operations replaced with Softpool, into the YOLOv4 backbone, along with image pre- 387

processing with contrast-limited adaptive histogram equalization (CLAHE), improving 388

over baseline results [121]. 389

Guo et al introduced an Atrous Spatial Pyramid Pooling (ASPP) module, along with 390

a convolution squeeze-and-excitation (CSE) attention channel module into the YOLOv5 391

backbone [122]. 392

Li et al also improved on the YOLOv5 network, by replacing the bottleneck structure 393

with a coordinate attention module, switching the SiLU activation function with Mish, the 394

CIoU loss function with SIoU, and combining focal loss and GHM loss functions as the 395

target confidence loss function [123]. 396

Wang et al use a modified YOLOv3, with a coordinate attention module, a new tiny 397

defect detection layer, culminating in a new anchor-free detector, YOLOX-CATD, which 398

does not require anchor-related hyperparameter tuning [124]. 399

Two-stage detectors We overall found fewer works with approaches based on two- 400

stage detectors. We will briefly describe some of the most representative ones in this 401

section. 402

Chen et al improved a faster R-CNN backbone with Gabor filters, optimized with 403

genetic algorithms, achieving better accuracy in [85]. 404

Li et al used a Cascade R-CNN, with a Switchable Atrous Convolution layer, and an 405

upgraded Feature Pyramid Network [125]. 406

Wu et al used a network structure based on Faster R-CNN, WALNet, with a dilated 407

convolution module, which employs a multi-scale convolution kernel to adapt to defects of 408

different sizes [126]. 409

4.2. Generative model-based approaches 410

As previously mentioned, a lot of the research in this area revolves around autoen- 411

coders or GANs. We will first mention relevant autoencoder approaches in the literature, 412

followed by GAN-based approaches. 413

Tian et al proposed an MXNet-based autoencoder, using cross-patch similarity to detect 414

and reconstruct similarities between different patches of the selected image. Tested on the 415

Hong Kong dataset, this method yielded accuracy values between 94.98-99.30% [127]. 416

Han et al used stacked convolutional autoencoders on synthetic datasets, created 417

with a new method, using expert knowledge to extract defect characteristics. It achieved 418

accuracy values between 78.8-87.1%, but the new method it introduced would allow for 419

the creation of new datasets without needing much defect data, it at all [128]. 420

Zhang et al used a deep denoising convolutional autoencoder (DDCAE), performing 421

image reconstruction with a depth denoising convolution self-encoder, followed by a 422

mathematical morphology analysis of the resulting image. It achieved performance rates 423

between 91-100% on a self-made dataset [129]. 424

Regarding GAN-based methods, Hu et al used an unsupervised method, with a 425

deep convolutional generative adversarial network that reconstructs a given defect image 426
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without the aforementioned defect, and compares it to the original image to discover the 427

presence of defects. It achieved accuracy levels between 82.92-93.45% [130]. 428

Liu et al devised a GAN-based framework, capable of automatically adapting to 429

different fabric textures, with a customized deep semantic segmentation network. They 430

achieved accuracy levels between 90.5-99.3% [131]. The same author later used proposed 431

another approach wherein a GAN model to build fault blocks from an acquired distribution 432

of fabric defect features, applying a Faster R-CNN for further defect detection. The system 433

achieved an accuracy of 95.3% on a supposedly publicly available dataset which we were 434

unable to procure [132]. 435

4.3. Method comparison 436

To summarize the information presented in the previous sections, we present Table ??, 437

which condenses the main points of the previously described approaches. 438

5. SOTA Datasets 439

In this area, until recently, there were relatively few good datasets available. In recent 440

years, the ZJU-Leaper dataset [133] was created, addressing many of the problems thus far 441

encountered, but its adoption in recent works seems rather slow. Table 2 summarizes all 442

the widely available datasets discovered regarding fabric defect detection. 443

Table 2. Comparison of datasets for fabric defect detection.

Dataset Samples Multi-Class
Defects

Defect
Types

Synthetic Im-
ages Public Availability

ine TILDA [134] 3200 Yes 8 No

Yes (https://universe.
roboflow.com/irvin-
andersen/tilda-fabric/
dataset/2), accessed on 4
April 2024

HKU Fabric [135] 162 Yes 6 Yes
Yes (https://ytngan.
wordpress.com/codes/
accessed on 4 April 2024)

Fabric Stain Dataset [136] 466 No - No

Yes (https://www.
kaggle.com/datasets/
priemshpathirana/fabric-
stain-dataset accessed on 4
April 2024)

DHU FD [109] 1500 Yes 10 No No
Aliyun Tianchi Fabric [137] 15,436 Yes 15 No No

YDFID-1 [138] 3501 No - No

No (https://github.com/
ZHW-AI/YDFID-1/blob/
main/README_ENG.md
accessed on 13 November
2022)

ZJU-Leaper [133] 98,777 No - No

Yes (http://www.
qaas.zju.edu.cn/zju-
leaper/accessed on 4 April
2024 )

Lusitano 36,000 No 35 No

Yes (https://
kailashhambarde.github.
io/Lusitano/accessed on 4
April 2024 )

The most used dataset for this type of work across the literature seems to be the TILDA 444

dataset [134], which has a relatively low amount of samples, and poor labels, but is the 445

most established, as it was the first such dataset made publicly available. The HKU Fabric 446

https://universe.roboflow.com/irvin-andersen/tilda-fabric/dataset/2
https://universe.roboflow.com/irvin-andersen/tilda-fabric/dataset/2
https://universe.roboflow.com/irvin-andersen/tilda-fabric/dataset/2
https://universe.roboflow.com/irvin-andersen/tilda-fabric/dataset/2
https://ytngan.wordpress.com/codes/
https://ytngan.wordpress.com/codes/
https://www.kaggle.com/datasets/priemshpathirana/fabric-stain-dataset
https://www.kaggle.com/datasets/priemshpathirana/fabric-stain-dataset
https://www.kaggle.com/datasets/priemshpathirana/fabric-stain-dataset
https://www.kaggle.com/datasets/priemshpathirana/fabric-stain-dataset
https://github.com/ZHW-AI/YDFID-1/blob/main/README_ENG.md
https://github.com/ZHW-AI/YDFID-1/blob/main/README_ENG.md
https://github.com/ZHW-AI/YDFID-1/blob/main/README_ENG.md
http://www.qaas.zju.edu.cn/zju-leaper/
http://www.qaas.zju.edu.cn/zju-leaper/
http://www.qaas.zju.edu.cn/zju-leaper/
https://kailashhambarde.github.io/Lusitano/
https://kailashhambarde.github.io/Lusitano/
https://kailashhambarde.github.io/Lusitano/
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Method type Method Advantages Disadvantages

Statistical approaches

Histogram statistics Simple Weak performanceComputationally easy
Co-occurence

matrices
Good for many task

types
Computationally
demanding

Auto-correlation
function

Good for repetitive
textures

Unsuited for erratic
textures

Local Binary Patterns
Insensitive to
lighting/rotation
changes

Lower performance

Low computational
cost

Mathematical Morphological features
Sensitive to defect
sizes/shapes

Ineffective on
irregular fabric

Effective for
segmentation tasks

Spectral approaches

Fourier transform
Used extensively in

literature Outdated in isolation
Good complement to

other methods

Wavelet transform
Good for image pre-
processing/feature

extraction
Outdated in isolation

Gabor transform High accuracy Outdated in isolation

Low computational
cost

Some approaches
require extensive
parameter tuning

Model-based approaches
Auto-regressive

models
Low computational

demand

Underused in fabric
defect detection/hard
to assess performance

Markov Random
Fields

Often used for
segmenta-

tion/classification
problems

Underused in this
area

Structural-based
approaches

Texture primitive
extraction

Effective in regular
textures

Unpopular
method/hard to

assess performance

Deep learning-based approaches
CNN-based

Most commonly used
approach

Immense training
data required

High performance
Need for extensive

manual
labor/annotation

Many possible
implementations

Inference can be
computationally

demanding

Generative model-based
Requires less training

data
Computationally

demanding
Competitive
performance Longer training time
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dataset is also used across many of the works, but it has an even smaller amount of samples, 447

which are of varying quality, and not very similar to defects observed in factory conditions. 448

The other datasets are occasionally used in other publications. Often, they are used 449

as a complement or comparison to the aforementioned TILDA and HKU datasets, and 450

rarely does an article focus exclusively on them. The Aliyun Tianchi Fabric dataset in 451

particular seems to be used more frequently in more recent publications. Regardless, they 452

all have several problems, such as a lack in greater numbers of samples, or of defect types. 453

ZJU-Leaper was introduced to correct many of these problems. However, given its relative 454

recency, it has not been used in many works. 455

Many of the articles we later analyzed, however, used private datasets, either assem- 456

bled from self-collected data, or provided to them by third parties in the industry, and these 457

datasets were then not released. Furthermore, while some of the previously mentioned 458

public datasets, such as ZJU-Leaper and DAGM, boast a good level of quality, they are 459

not as standardized nor hold a benchmark status in this area, compared to datasets such 460

as MVTec, widely considered the benchmark to use in more generalized unsupervised 461

anomlay detection problems [139]. 462

This poses another problem in this area, as the lack of a standardized dataset and the 463

use of self-collected data makes it harder to reproduce many of the methods described in 464

such works. 465

6. Challenges and limitations 466

This area shows several limitations, which have been mentioned throughout our work. 467

We will review the main ones in this section. 468

As mentioned, the different types of approaches are often categorized as traditional or 469

deep learning-based, with the latter now being the predominantly investigated one by a 470

wide margin. [14] While this in itself is not problematic, some issues need to be addressed. 471

Firstly, as pointed out in many subsections of the traditional approaches section, 472

the traditional approaches are now mostly unused, or used mostly as complements or 473

pre-processing steps to the deep learning approaches. While deep learning shows great 474

results and much promise across almost all areas where it is applied, it is not necessarily 475

the simplest or most convenient approach for most use cases. Considering fabric defect 476

detection operations are to be mostly conducted in factories, where computational resources 477

may not be readily available, it is possible that deep learning methods would either be 478

impractical, or require a large investment in computational resources, which might not be 479

economically feasible to factory personnel. [140] Traditional approaches are mostly less 480

computationally demanding, which would justify more research to improve upon such 481

methods, but as research on them has greatly diminished, and most of the more important 482

works in the approaches are now somewhat outdated, it becomes hard to ascertain how well 483

they compare to deep learning approaches, and whether the performance gains achieved 484

by deep learning methods justify their continued investment over the traditional methods. 485

Secondly, the border between the two different approaches is getting harder and harder 486

to establish. As previously established, many contemporary deep learning approaches 487

utilize some form of the previously defined traditional methods (e.g - using using a Faster 488

R-CNN with Gabor filters optimized by genetic algorithms [80]), either as feature extraction, 489

for classification purposes, or other ends. 490

Thirdly, the new deep learning methods show more promising results, and as such, 491

further research in this area appears to be conducted almost exclusively in this manner. As 492

such, further investigation of traditional approaches without the use of deep learning is 493

being largely abandoned. [14] 494

As deep learning becomes the dominant approach to this problem, other problems 495

present themselves. Many of the proposed deep learning approaches can be split into 496

CNN-based approaches and generative model-based approaches. While the latter requires 497

little in training data, the former is essentially dependent on such data, which raises the 498

previously assessed problem of the availability of standardized datasets for this problem. 499
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As mentioned, many of the datasets used are now outdated, contain few samples, few 500

variety in defect types, or have some other problem, or a combination of the previous ones. 501

While new datasets such as ZJU-Leaper are a promising direction, their adoption remains 502

slow, and the old datasets remain the dominant ones. [133] This area requires more datasets, 503

which can be adopted as standards, to conduct further research on supervised approaches 504

going forward. 505

Regarding the data used, there is still a lack of consensus on what taxonomy of 506

defects should be considered, with different authors considering different types of defects. 507

While some defects such as holes are universally considered, the terminology and types of 508

defects are left unclear. Recent advances in single-class anomaly detection could potentially 509

trivialize this problem, with such taxonomies becoming immaterial to the task of detecting 510

defects regardless of taxonomy. However, the lack of standards in this area means that 511

research will continue with differing understandings of what is considered a defect until 512

these standards are addressed. [133] 513

While generative model-based approaches show promise in their low requirements of 514

training data, which offsets this problem, research into these methods is clearly progressing 515

more slowly than into CNN-based approaches. The reasons for this are unclear, yet the 516

trend is observable, which cements the need for better, more standardized datasets. 517

Still on the matter of datasets, it is noted that many authors either used their own self- 518

collected datasets, or used paid third-party datasets. This poses a problem of reproducibility, 519

with the current authors being unable to replicate the obtained results, due to the lack of 520

access to those datasets. Without reproducibility, it becomes harder to ascertain which of 521

the analyzed works truly pose new and promising areas of research. 522

Finally, on the matter of reproducibility, there is another observed problem that was 523

unmentioned throughout the previous analysis. Of nearly all the articles analyzed, nearly 524

none of the authors released the code they used to run their experiments. This further 525

raises reproducibility problems, which compounds the previously mentioned difficulties in 526

assessing the most promising future avenues of research. 527

7. Future trends and research directions 528

In the previous section, we highlighted many problems and challenges we identified 529

in this area. We believe the most promising trends and research directions to follow in 530

the future will consist then in addressing those challenges, and also highlight the current 531

trends spotted in the literature, and in what directions those may follow in the future. 532

Regarding trends spotted in the literature, as previously stated, the current trends 533

clearly point towards deep learning-based approaches. Current approaches focus more on 534

CNN-based approaches, and as further refinements to the architectures of these networks 535

surface in the literature, we predict they may be applied to this area as well. Further 536

refinements to one and two-stage detectors are consistently observed in the literature, 537

across more areas than even fabric defect detection, so it stands to reason that there will 538

continue to be innovations in this area as well. Generative model-based approaches are 539

rarer, but given the increased interest in generative AI in recent years, it is possible that these 540

approaches will gain more popularity in the future. Golden template-based approaches 541

were observed in the literature, and we believe they may pose a possible avenue of research 542

in the near future, as they would assist in solving the problem caused by the lack of 543

standardized datasets, as we previously observed. 544

Another way of approaching the lack of standardized datasets would be through 545

the use of synthetic data, to augment and balance currently existing datasets. While this 546

approach is explored and used in other areas [141], we found very few articles exploring 547

such an apporach in this area. 548

Other possible architectures, such as capsule networks [142], and transformers [143], 549

have barely been studied in this context, or not at all. As such, we believe this could pose 550

another possible research direction, with the possibility of studying how these architectures 551

can be improved towards this specific area. 552
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The ZJU-Leaper dataset, as pointed out previously, is unconcerned as to the possible 553

classification of defects, and is designed to facilitate the task of defect detection without 554

any classification. As such, we believe this may pose a possible research direction by which 555

to tackle this problem, avoiding the defect taxonomy problem identified in the previous 556

section. 557

As previously stated, deep learning-based approaches are far more taxing on compu- 558

tational resources than traditional approaches. A new trend that seems to be emerging to 559

tackle this problem consists of using edge devices to perform defect detection in factory 560

settings. While such works are more practical than theoretical in nature, they are very 561

suited to the problem at hand, and research into them is likely to continue, which is a 562

desirable outcome. 563

We also highlight that while these works are valid and worthwhile contributions to 564

the area of fabric defect detection and anomaly detection as a whole, the ultimate purpose 565

of these works is to improve task performance in industrial settings. In taht regard, we 566

point out that few of these studies try to ascertain whether the proposed solutions are 567

valid in factory conditions. When these considerations occur, it is usually in the context 568

of edge devices, as previously mentioned. As such, we believe future works should be 569

more mindful of their potential future industrial applications, and tests should be done 570

considering factory environment constraints. 571

Finally, we again point out that traditional approaches have mostly fallen out of 572

use in recent years, but given the time gap between their use and the advent of deep 573

learning-based approaches, it is possible these methods have not been given the attention 574

they deserve, and may be able to achieve competitive SOTA results with a fraction of 575

the computational resources demanded by deep learning-based approaches. As such, we 576

believe more resources and research should be devoted to these methods, to ascertain 577

whether or not any performance decreases achieved by using them would outweigh the 578

decreased computational resource need. 579

8. Conclusions 580

Fabric defect detection is a very important area of research, as it may lead to the 581

automation of intensive and defective human labor, with significant economic consequences. 582

We have conducted a literature review to discern the most relevant trends and approaches 583

observed, mostly throughout the last 5 years. 584

We conclude that most approaches in this area can be divided into traditional ap- 585

proaches, which consist of a vast family of methods using statistical, spectral, morpholog- 586

ical or structural information of fabric images, or into deep learning-based approaches, 587

which leverage the recent growth of deep learning and apply it to this area. Most of the 588

latter approaches consist of CNN-based approaches, with variations in basic CNN archi- 589

tectures tailored to this task type, or in generative model-based approaches. While deep 590

learning-based approaches appear to boast greater performance than traditional methods, 591

we believe the former are now greatly lacking in research efforts, and believe they pose a 592

promising area of research. 593

We also outline and summarize the most relevant works identified in this area, and 594

provide an analysis of the current major challenges and limitations observed in the literature, 595

and identify the most promising future areas of research. 596
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The following abbreviations are used in this manuscript: 614

615

MDPI Multidisciplinary Digital Publishing Institute
CNN Convolutional Neural Networks
GAN Generative Adversarial Model
ML Machine Learning
DL Deep Learning
AI Artificial Intelligence
GLCM Grey Level Co-occurrence Matrix
LBP Local Binary Pattern
MDBP Multi Directional Binary Pattern
PCA Principal Component Analysis
RDPSO Random Drift Particle Swarm Optimization
MRF Markov Random Field
MS-SSIM Multiscale Structural Similarity Index
PG-LSR Prior-Knowledge Guided Least Squares Regression
SVM Support Vector Machine
FN False Negative
SSD Single Shot MultiBox Detector
YOLO You Only Look Once
RPN Region Proposal Network
SPP Spatial Pyramid Pooling
ASPP Atrous Spatial Pyramid Pooling
CSE Convolution Squeeze-and-Excitation
DDCAE Deep Denoising Convolutional Autoencoder
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