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Resumo

A detecção automática de eventos anómalos em imagens de videovigilância permanece
uma inquietação por parte da comunidade científica. Sendo a proteção o principal
propósito da instalação de sistemas de vigilância, a capacidade de monitorização da segu-
rança pública, e a sua rápida resposta para satisfazer essa finalidade, é uma adversidade
até para o ser humano. Nos dias de hoje, com o aumento do uso de sistemas de video-
vigilância, a capacidade humana não tem alcançado a cadência necessária, exigindo uma
supervisão exorbitante para a identificação de acontecimentos invulgares que coloquem
uma identidade ou sociedade em risco. O facto da probabilidade de se suceder um inci-
dente ser extremamente reduzida comparada a eventualidades normais, existe um gasto
substancial de tempo de ofício. Consequentemente, a necessidade para um algorítmo de
detecção automática de incidentes tem vindo a ser crucial em videovigilância. Mesmo
sendo alvo de vários trabalhos científicos publicados na última década, o desempenho
do estado-da-arte continua insatisfatório e abaixo do requisitado para uma implemen-
tação eficiente deste tipo de tecnologias em ambientes e cenários totalmente espontâneos
e incontinentes. Porém, apesar de toda a investigação realizada nesta área, a automati-
zação de detecção de incidentes é um desafio que perdura por várias razões. Começando
pela diversidade ambiental, a complexidade da semalhança entre movimentos de ações
distintas, cenários de multidões, e ter em conta todos os padrões para definir uma ação
normal, é indiscutivelmente difícil ou impossível. Não obstante a dificuldade de resolução
destes problemas, o obstáculo fundamental consiste na obtenção de umnúmero suficiente
de instâncias classificadas anormais, considerando algoritmos de visão computacional é
essencial. Mais importante ainda, obter umvasto conjunto de diferentes vídeos capazes de
satisfazer as condições previamente mencionadas, não é uma tarefa simples. Em adição
ao esforço e tempo despendido, estabelecer um limite entre ações normais e anormais é
frequentemente indistinto.

Tendo estes aspetos em consideração, neste trabalho, o principal objetivo é providen-
ciar diversas soluções para os problemas previamente mencionados, concentrando na
análise de métodos do estado-da-arte e apresentando uma visão abrangente dos mesmos
para clarificar os conceitos aplicados na captura de padrões normais e anormais. Inclu-
sive, a exploração de diferentes estratégias habilitou-nos a desenvolver novas abordagens
que aprimoram consistentemente o desempenho do estado-da-arte. Por último, anunci-
amos a disponibilidade de umnovo conjunto de dados, em grande escala, totalmente ano-
tado ao nível da frame em relação à detecção de anomalias em um evento específico com
uma vasta diversidade em cenários de luta, podendo ser livremente utilizado pela comu-
nidade científica. Neste documento, como propósito de requerer omínimo de supervisão,
são descritas duas propostas diferentes; O primeiro método põe em prática a recente téc-
nica de aprendizagem auto-supervisionada para evitar a árdua tarefa de anotação, onde o
conjunto de treino é classificado autonomamente usando uma estrutura de aprendizagem
iterativa composta por duas redes neuronais independentes que fornecem dados entre si
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através de uma estrutura Bayesiana. A segunda proposta explora um novo método para
aprender ummodelo de classificação de anomalias no paradigmamultiple-instance learn-
ing manuseando vídeos fracamente anotados, onde a classificação do conjunto de treino
é feita ao nível do vídeo. As experiências foram concebidas em vários conjuntos de dados,
e as nossas soluções superam consolidamente o estado-da-arte. Adicionalmente, como
sistema de prova de conceito, apresentamos os resultados da execução do nosso modelo
em simulações reais em diferentes ambientes.
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Resumo Alargado

A detecção automática de eventos anómalos em imagens de videovigilância permanece
uma inquietação por parte da comunidade científica. Sendo a proteção o principal
propósito da instalação de sistemas de vigilância, a capacidade de monitorização da segu-
rança pública, e a sua rápida resposta para satisfazer essa finalidade, é uma adversidade
até para o ser humano. Nos dias de hoje, com o aumento do uso de sistemas de video-
vigilância, a capacidade humana não tem alcançado a cadência necessária, exigindo uma
supervisão exorbitante para a identificação de acontecimentos invulgares que coloquem
uma identidade ou sociedade em risco. O facto da probabilidade de se suceder um inci-
dente ser extremamente reduzida comparada a eventualidades normais, existe um gasto
substancial de tempo de ofício. Consequentemente, a necessidade para um algorítmo de
detecção automática de incidentes tem vindo a ser crucial em videovigilância. Mesmo
sendo alvo de vários trabalhos científicos publicados na última década, o desempenho
do estado-da-arte continua insatisfatório e abaixo do requisitado para uma implemen-
tação eficiente deste tipo de tecnologias em ambientes e cenários totalmente espontâneos
e incontinentes. Porém, apesar de toda a investigação realizada nesta área, a automati-
zação de detecção de incidentes é um desafio que perdura por várias razões. Começando
pela diversidade ambiental, a complexidade da semalhança entre movimentos de ações
distintas, cenários de multidões, e ter em conta todos os padrões para definir uma ação
normal, é indiscutivelmente difícil ou impossível. Não obstante a dificuldade de resolução
destes problemas, o obstáculo fundamental consiste na obtenção de umnúmero suficiente
de instâncias classificadas anormais, considerando algoritmos de visão computacional é
essencial. Mais importante ainda, obter umvasto conjunto de diferentes vídeos capazes de
satisfazer as condições previamente mencionadas, não é uma tarefa simples. Em adição
ao esforço e tempo despendido, estabelecer um limite entre ações normais e anormais é
frequentemente indistinto.

Esta dissertação tem como principal finalidade apresentar conceitos e soluções de visão
computacional em resposta ao desafio biométrico em detecção de humanos com com-
portamentos anormais. De forma mais inerente, pretende-se: 1) compreender como ex-
trair características temporais de movimento e aparência em imagens de vídeo; 2) perce-
ber como manusear essas características para diferentes tipos de aprendizagem na de-
tecção de anomalias, com especial foco em aprendizagem fraca, incluindo uma deta-
lhada descrição dos métodos do estado-da-arte; 3) desenvolver dois novo métodos dife-
rentes para a detecção de anomalias, um operando num sistema de aprendizagem auto-
supervisionada, enquanto que o segundo opera no paradigma de aprendizagem supervi-
sionada fraca; 4) apresentar um novo conjunto de dados público para uso científico na
área de detecção de anomalias. De modo a alcançar estes objetivos, esta tese apresenta
diversas contribuições pormenorizadas ao longo de sete capítulos.
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O primeiro capítulo determina o âmbito e o contexto do problema em que se enquadra
esta dissertação. Ademais, são descritos os principais objetivos e motivações do presente
trabalho de investigação, bem como as principais contribuições da investigação realizadas
nesta tese de forma a melhorar o estado-da-arte na área da detecção de anomalias. Por
fim, é descrito a estrutura deste documento.

O segundo capítulo apresenta uma revisão detalhada da literatura nos domínios da in-
vestigação essencial ao desenvolvimento de ummétodo para a detecção de eventos anor-
mais. Este capítulo encontra-se organizado em secções com o objetivo de: 1) apresentar
o estado-da-arte em extração de características espaço-temporal de imagens de vídeo; 2)
explicar detalhadamente o uso dessas mesmas características de vídeos no paradigma da
aprendizagemsupervisionada fraca para a detecção de segmentos de anomalias, incluindo
o atual método considerado estado-da-arte neste tipo de aprendizagem; e 3) expor com
detalhe as diferentes propostas que abordam o problema com o tipo de aprendizagem
não supervisionada. Considerando a tarefa extremamente difícil de obter um conjunto
de dados robusto, que tenha a capacidade de apresentar as diversas complexidades dos
movimentos anormais para que seja possível aprender um modelo eficiente em detectar
diversas anomalias, é necessário ter em conta as diferentes abordagens ao problema para
contornar esta dificuldade e contudo aprender um modelo que seja eficaz. O estado-da-
arte atual foca-se principalemente em tentarminimizar aomáximo a supervisão deste tipo
de conjunto de dados. Começando pelos metodos que aplicam aprendizagem supervisio-
nada fraca, consistindo emprovidenciar vídeos, normais e anormais, aomodelo semqual-
quer informação temporal e apenas dispor a informação se o modelo está a analisar um
video normal, apenas contendo eventos do dia-a-dia, ou um vídeo anormal, contendo nal-
gum momento um evento incomum, sem que o modelo saiba exatamente quando. Final-
mente, é também apresentado os diferentes métodos de aprendizagem não supervisio-
nada que concentram-se em apenas analisar os padrões de comportamentos normais, isto
é, omodelo apenas irá observar vídeos normais. Destesmétodos são abordados diferentes
propostas para captura de padrões normais: 1) através de um auto-encoder que aprende
apenas características espaciais e temporais normais, sendo depois incapaz de reproduzir
um evento anormal; 2) através de redes adversárias generativas apenas analisando o com-
portamento comum presente nos vídeos normais, desenvolvendo uma incapacidade de
gerar eventos anormais; e 3) através da aprendizagem de um auto-encoder mediante a
extração de características baseadas nos comportamentos normais do esqueleto humano,
tornando-se incapaz de reproduzir um comportamento anormal do esqueleto humano.
Desta leitura, foi possível concluir a incapacidade da aplicação dos métodos de apren-
dizagem não supervisionada em conjunto de dados com bastante heterogeneidade entre
os vídeos, enquanto que os métodos de aprendizagem supervisionada, tendo a vantagem
de analisar ambos os tipos de vídeo, apresentam níveis de desempenho mais elevados.

No terceiro capítulo apresentamos o primeiro método proposto neste documento, com
o objetivo de detectar anomalias no paradigma da aprendizagem supervisionada fraca
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e aplicando a recente técnica de aprendizagem auto-supervisionada. Este método é
composto por duas redes neuronais independentes, contidas num sistema iterativo, que
fornecem dados entre si através de uma estrutura Bayesiana. A base lógica desta proposta
consiste no aumento do conjunto de treino de cada modelo com instâncias não classifi-
cadas. Esse aumento é gerado através do sistema iterativo que, baseado na filtração das
instâncias incertas indicadas pelas estrutura Bayesiana, acrescenta apenas as instâncias
negativas e positivas commaior confiabilidade, provocando assimumaumento de desem-
penho na iteração seguinte do modelo.

O quarto capítulo apresenta o segundo método proposto nesta dissertação, focando-se
apenas no paradigma de aprendizagem supervisionada fraca na detecção de anomalias.
Esta proposta aplica a técnica do modelo de mistura de Gaussianas para manipular as
distribuições de pontuações do modelo consoante as características extraídas de ambos
os vídeos normais e anormais. A base lógica deste método consiste nos diferentes supos-
tos comportamentos de distribuições entre vídeos normais e anormais. Baseado nessa
divergência de distribuições, e conjuntamente das aplicações de distribuições normais e
mistura de Gaussianas, o objetivo é penalizar o nosso modelo caso não cumpra as regras
impostas na nossa função de custo. Nesta proposta analisámos diferentesmodos de abor-
dar o problema aplicando a mistura de Gaussianas. Após o estudo matemático deste tipo
de modelos, fomos capazes de desenvolver um modelo, aplicando apenas aprendizagem
supervisionada fraca, e superando assim o estado-da-arte atual neste tipo de aprendiza-
gem.

O quinto capítulo apresenta uma detalhada descrição dos conjuntos de dados em de-
tecção de anomalias, atualmente públicos, assim como também anunciamos e apresen-
tamos uma descrição pormenorizada de um novo conjunto de dados para detecção de
anomalias,UBI-Fights, totalmente disponível. Coma análise prévia dos conjuntos já exis-
tentes, identificamos as características indispensáveis que não se encontravam contidas
nestes conjuntos. Por conseguinte, desenvolvemos o nosso próprio conjunto de dados,
de grande escala, apresentando características distintas dos existentes, e abrangendo os
requisitos necessários, podendo ser livremente utilizado pela comunidade científica na
área de detecção de anomalias. Este novo conjunto de dados é composto por uma vasta
diversidade em cenários de luta, e encontra-se totalmente anotado a nível temporal.

O sexto capítulo consiste na apresentação dos resultados obtidos nas experiências rea-
lizadas em diversos conjuntos de dados, com o propósito de comparar os nossos métodos
propostos com o atual estado-da-arte. Adicionalmente, como sistema de prova de con-
ceito, apresentamos os resultados da execução do nosso modelo em simulações reais, em
diferentes ambientes, pessoalmente recolhidas por nós através de uma parceria com a
empresa de tecnologia TOMI WORLD. Com o objetivo de observar o comportamento do
nosso modelo consoante os diferentes cenários simulados e supervisionados por nós.
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Por fim, no sétimo capítulo é discutido as contribuições e conclusões deste trabalho
de investigação para o desenvolvimento de um modelo de inteligência artificial para a
detecção de anomalias em imagens de vídeos. Apresentando um resumo dos métodos
propostos, as suas vantagens e desvantagens para amotivação de desenvolvimento futuro
neste tipo de tecnologias. Por último, é feito uma perspetiva do trabalho futuro em dife-
rentes tipos de aprendizagem na detecção automática de eventos anómalos em imagens
de vídeo.

x



Abstract

The automatic detection of abnormal events in surveillance footage is still a concern of the
research community. Since protection is the primary purpose of installing video surveil-
lance systems, the monitoring capability to keep public safety, and its rapid response to
satisfy this purpose, is a significant challenge even for humans. Nowadays, human ca-
pacity has not kept pace with the increased use of surveillance systems, requiring much
supervision to identify unusual events that could put any person or company at risk, with-
out ignoring the fact that there is a substantial waste of labor and time due to the extremely
low likelihood of occurring anomalous events compared to normal ones. Consequently,
the need for an automatic detection algorithm of abnormal events has become crucial in
video surveillance. Even being in the scope of various research works published in the last
decade, the state-of-the-art performance is still unsatisfactory and far below the required
for an effective deployment of this kind of technology in fully unconstrained scenarios.
Nevertheless, despite all the research done in this area, the automatic detection of abnor-
mal events remains a challenge formany reasons. Starting by environmental diversity, the
complexity of movements resemblance in different actions, crowded scenarios, and tak-
ing into account all possible standard patterns to define a normal action is undoubtedly
difficult or impossible. Despite the difficulty of solving these problems, the substantive
problem lies in obtaining sufficient amounts of labeled abnormal samples, which con-
cerning computer vision algorithms, is fundamental. More importantly, obtaining an ex-
tensive set of different videos that satisfy the previously mentioned conditions is not a
simple task. In addition to its effort and time-consuming, defining the boundary between
normal and abnormal actions is usually unclear.

Henceforward, in this work, the main objective is to provide several solutions to the
problems mentioned above, by focusing on analyzing previous state-of-the-art methods
and presenting an extensive overview to clarify the concepts employed on capturing nor-
mal and abnormal patterns. Also, by exploring different strategies, we were able to de-
velop new approaches that consistently advance the state-of-the-art performance. More-
over, we announce the availability of a new large-scale first of its kind dataset fully anno-
tated at the frame level, concerning a specific anomaly detection event with a wide diver-
sity in fighting scenarios, that can be freely used by the research community. Along with
this document with the purpose of requiringminimal supervision, two different proposals
are described; the first method employs the recent technique of self-supervised learning
to avoid the laborious task of annotation, where the training set is autonomously labeled
using an iterative learning framework composed of two independent experts that feed
data to each other through a Bayesian framework. The second proposal explores a new
method to learn an anomaly rankingmodel in themultiple instance learning paradigm by
leveragingweakly labeled videos, where the training labels are done at the video-level. The
experimentswere conducted in severalwell-knowndatasets, and our solutions solidly out-
perform the state-of-the-art. Additionally, as a proof-of-concept system, we also present
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the results of collected real-world simulations in different environments to perform a field
test of our learned models.

Keywords

Abnormal Event Detection, Anomaly Detection, Artificial Intelligence, Biometrics, Com-
puter Vision, Machine Learning, Pattern Recognition, Self-Supervised Learning, Super-
vised Learning, Unsupervised Learning, Video Image Analysis, Visual Surveillance

xii



Contents

1 Introduction 1
1.1 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 RelatedWork 5
2.1 Spatiotemporal Features with 3D Convolutional Networks . . . . . . . . . 5

2.1.1 3D Convolution and Pooling . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Network Settings and Exploring Kernel Temporal Depth . . . . . . 6
2.1.3 Spatiotemporal Feature Learning . . . . . . . . . . . . . . . . . . . 7

2.2 Weakly-supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Multiple Instance Learning and Ranking Model . . . . . . . . . . . 7
2.2.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Generative Adversarial Networks . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Conditional GANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Abnormality Detection . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Spatiotemporal Auto-encoders . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 Variational Auto-encoders . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Skeleton-based Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.1 Crowd Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.2 Pose Flow Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.3 Learning Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Iterative Weak/Self-Supervised Learning Framework 15
3.1 Weakly-supervised Network and Novel Term . . . . . . . . . . . . . . . . . 16
3.2 Bayesian Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Self-supervised Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Proposed Distribution-Based Loss 21
4.1 Definitions and Expectation-Maximization Algorithm . . . . . . . . . . . . 22

4.1.1 Expectation-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.2 Maximization-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Anomaly Detection and Ranking Model . . . . . . . . . . . . . . . . . . . . 25
4.3 Ranking Model vs. Negative Log-Likelihood Model . . . . . . . . . . . . . 27

5 UBI-Fights Dataset 31
5.1 Related Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 UMN Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.2 USCD Peds1 and Peds2 Datasets . . . . . . . . . . . . . . . . . . . . 32

xiii



5.1.3 CUHK-Avenue Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.4 Street Scene Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.5 ShanghaiTech Campus Dataset . . . . . . . . . . . . . . . . . . . . . 34
5.1.6 UCF-Crime Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 New Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.1 Collection and Preprocessing . . . . . . . . . . . . . . . . . . . . . . 36
5.2.2 Annotation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Experiments and Discussion 39
6.1 Datasets, Baselines, and Empirical Evaluation Protocol . . . . . . . . . . . 39
6.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3 Self-Supervised Learning Results Comparison . . . . . . . . . . . . . . . . 41
6.4 Weakly-Supervised Learning Results Comparison . . . . . . . . . . . . . . 43
6.5 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Conclusions and Future Work 51
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Bibliografia 55

xiv



List of Figures

2.1 2D and 3D convolution operations. . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Convultional 3-Dimensional network (C3D) architecture. . . . . . . . . . . 6
2.3 Auto-encoder architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Variational auto-encoder architecture. . . . . . . . . . . . . . . . . . . . . . 11
2.5 Skeleton pose estimation example. . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Cohesive pictorial view of the iterative weak/self-supervised learning
framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Comparison between histograms in relation to the sample entropy term. . 17
3.3 Comparison between the posteriors probabilities obtained by the Bayesian

classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Predicted scores and respective distribution of a video containing an anomaly. 22
4.2 The flow diagram of the proposed Gaussian Mixture Model-based approach. 26

5.1 Illustration images of the scenes from the UMN dataset. . . . . . . . . . . 32
5.2 Illustration images of the scenes from the UCSD Pedestrians dataset. . . . 33
5.3 Illustration images of the scenes from the CUHK-Avenue dataset. . . . . . 33
5.4 Illustration images of the scenes from the Street Scene dataset. . . . . . . . 34
5.5 Illustration images of the scenes from the ShanghaiTech Campus dataset. 34
5.6 Illustration images of the scenes from the UCF-Crime dataset. . . . . . . . 35
5.7 Illustration images of the scenes from the UBI-Fights dataset. . . . . . . . 36
5.8 Statistics of all video sequences in the UBI-Fights dataset. . . . . . . . . . 37
5.9 New developed annotation aplication used for the UBI-Fights dataset. . . . 37

6.1 Comparison between the ROC curves obtained by the eight methods
considered in comparison with the Weakly-Supervised model (WS)/Self-
Supervisedmodel (SS) framework, for theUBI-Fights,UCF-Crime [SCS18]
and UCSD-Peds1 [LMV13] datasets. . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Comparison between the ROC curves obtained by the seven methods
considered in comparison with our Gaussian Mixture Model (GMM)-
based proposal, for the UBI-Fights, UCF-Crime [SCS18] and UCSD-Peds1
[LMV13] datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3 Distribution scores comparison between Sultani [SCS18]’s and our GMM-
based approaches in the three datasets. . . . . . . . . . . . . . . . . . . . . 47

6.4 Performance evolution with respect to theWS/SS framework iteration, ob-
served for theUBI-Fights,UCF-Crime [SCS18], andUCSD-Peds1 [LMV13]
sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5 Requested TOMI devices for the experiments in capturing the scenes illus-
trated in figure 6.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xv



6.6 Qualitative results of ourmodel performed in real-world scenarios. The red
window corresponds to the ground-truth of the scene. . . . . . . . . . . . . 50

xvi



List of Tables

6.1 Performance summary, concerning the individual training in each scene
of the UCF-Crime dataset [SCS18], of the proposed weak/self-supervised
method with respect to the state-of-the-art. The result values correspond
to the Area Under the Curve (AUC). . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Performance summary of the GMM method with respect to the state-of-
the-art. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3 Performance summary of the proposed method with respect to the state-
of-the-art. The final row in each dataset provides the performance of the
GMM approach incorporated in the WS/SS framework. . . . . . . . . . . . 48

xvii



xviii



Acronyms

AE Auto-encoder

AI Artificial Intelligence

AUC Area Under the Curve

C3D Convultional 3-Dimensional network

cGANs Conditional Generative Adversarial Networks

EER Equal Error Rate

EM Expectation-Maximization

FCN Fully Connected Neural network

GANs Generative Adversarial Networks

GMM Gaussian Mixture Model

GOF Goodness of Fit

HOF Histogram of Optical-Flows

HOG Histogram of Oriented Gradients

IoU Intersection over Union

KDE Kernel Density Estimator

LSTM Long Short Term Memory

MIL Multiple Instance Learning

ML Machine Learning

MLE Maximum Likelihood Estimation

MPED Message-Passing Encoder-Decoder

MSE Mean Squared Error

NLL Negative Log-Likelihood

NMS Non-Maximum Suppression

PDF Probability Density Function

PF Pose Flow

xix



RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

SS Self-Supervised model

SVM Support Vector Machine

SPPE Single Person Pose Estimation

VAE Variational Auto-encoder

WS Weakly-Supervised model

xx



Chapter 1

Introduction

Nowadays, the thriving field of Artificial Intelligence (AI) has many practical applications
and research areas. The development and employment of intelligent systems have been
crucial in the human’s routine labor, biometric system, speech understanding, medical
analyses, and big data processing, being the basis support in every scientific research
domains. The difficulties faced by those systems rely on the AI systems’ ability to ex-
tract patterns and acquire their own knowledge from the observed raw data, which is de-
scribed as Machine Learning (ML). With the advances of computers’ technology and,
consequently, the ML domain, the improvements on artificial neural networks have al-
lowed diverse research for hard-coded knowledge, leading to a field known as deep learn-
ing [LBH15, GBC16]. Deep learning solves the main problem of extracting high-level and
abstract features, such as every individual pixel when analyzing images of persons, where
the factors of variations are innumerous, including the person’s pose, clothes, ethnicity,
the image’s angle, and brightness. Deep learning algorithms learn representations that
are denoted from others with multiple levels of abstraction, i.e., patterns among data col-
lection, enabling computers to develop complex solutions from simple concepts. These
computational models that are composed of multiple processing layers, dramatically im-
proved the state-of-the-art in solving these problems [KSH12, Sch15], resulting in its in-
creased use in various scientific research domains, continuously, bringing breakthroughs
in deep convolutional neural networks in processing images, video, speech, and audio.

With the advances in the deep learning field and increasing use of convolutional neural
networks, video image analysis has become an active research topic in solving biometric
challenges over the last decade. Due to the continuous advent of surveillance systems,
the development of biometric technologies to satisfy the need for an automatic anomaly
detection algorithm is still a concern in the computer vision research community.

Anomaly detection consists of distinguishing which instances are dissimilar in a data-
driven fashion. Those instances are known as anomalies, abnormalities, or outliers, and
they may have origin on errors, but depending on which concept we are analyzing, occa-
sionally, it may indicate a previously unknown event. So, an anomaly is an occurrence
that deviates significantly from previously observed occurrences [Haw80, CC19]. In the
video image concept, the data has spatial and temporal characteristics, so normally the
anomalies are caused by motion or appearance of foreign objects. Abnormal event detec-
tion, in the video image analysis, is a challenging task not only for its large input data but
also for the intra-diversification in a dataset, complexity of movements, and resemblance
behaviors.
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This work presents a set of solutions to bypass the difficulties of video image analysis
in detecting abnormal events, in the supervised learning paradigm, starting with an ex-
tensive overview of the current state-of-the-art methods, and presenting two new distinct
approaches that consistently outperforms the state-of-the-art, and additionally, introduc-
ing a new freely available database for anomaly detection.

1.1 Motivation and Objectives

With the increasing use of video surveillance systems, we are specifically engaged with
the biometric challenge of detecting abnormal human behavior. The primary purpose
of this dissertation is to present computer vision concepts in response to this challenge
and clarify how motion and appearance can be computed in order to detect anomalies in
multiple supervision paradigms. These objectives aim to provide several answers for the
current difficulties approaching the different supervised learning domains. The motiva-
tion behind these objectives is to show how our computer vision algorithms successfully
detect abnormal events and, hopefully, the supplied solutions support further research in
this field. In anomaly detection, considering the video image analysis domain, one of the
key challenges is the difficult task of providing divergent labeled data to the algorithm.
Concerning its effort and time-consuming, we are also interested in employing weakly
and partially supervised learning to face this key challenge. Therefore, in contrast to un-
supervised learning algorithms, we will provide not the exact information as strongly-
supervised learning applies, but we still provide minimum information about the data fed
to the algorithms, to side-step the difficult task of annotation. To attain this goal, several
approaches that already avoid the strong annotation task will be analyzed and used as a
baseline of our two new proposals.

1.2 Main Contributions

The main contributions of our research work are a set of novel approaches to detect ab-
normal events in surveillance footage. The results achieved by our proposals can be con-
sidered an accomplishment, considering that apart from being novel approaches and con-
sistently outperform the state-of-the-art, they performed quite successfully when testing
in real-world scenarios. The individual contributions of this thesis to improve the state-
of-the-art in abnormal event detection are briefly described in the following paragraphs.

As the first contribution, the comparison and discussion among the detailed state-of-
the-art methods in the anomaly detection field contained in chapter 2.

The second contribution regards the proposal of using weak/self-supervised learning
frameworks for abnormal events detection, resulting in a paper published in the 2020 IEEE
International Joint Conference on Biometrics (IJCB) [DP20].
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For the third contribution, we present a novel approach in the weakly-supervised learn-
ing paradigm for abnormal events detection. The new method employs a Gaussian Mix-
ture Model (GMM) to learn a new ranking model that predicts anomaly events.

As the fourth and final contribution, we introduce the construction of a new large-scale
first-of-the-kind anomaly detection database, which is freely available through theweb for
research purposes. As described in chapter 5, this database presents the characteristics
that distinguish from the remaining public and free anomaly detection datasets.

1.3 Thesis Organization

The remainder of this thesis is organized as follows: chapter 2 presents a detailed review
of the state-of-the-art in motion and appearance extraction on video sequences. Further-
more, a detailed overview of the anomaly detection state-of-the-art is given, focusing on
how supervised and unsupervised learning methods use motion and appearance to detect
abnormal events, with a focal point in weakly-supervised learning. Chapter 3 describes
our new approach employing an iterative framework composed of two independent ex-
perts that provide labeled data to each other through a Bayesian framework, working un-
der the weak and strong supervision paradigms based on self-supervised learning. Chap-
ter 4 describes the main concepts in Gaussian Mixtures, and a novel proposal working
under the weakly-supervised learning paradigm is further detailed. A detailed descrip-
tion of the current publicly available anomaly detection datasets is given in chapter 5,
and the new public and freely available UBI-Fights database is introduced and detailed.
Chapter 6 describes all the experiments involving both the newly proposed approaches in
this work with comparison to the considered state-of-the-art methods. Furthermore, the
real-world simulation scenarios captured for field test purposes are summarized and dis-
cussed. Finally, chapter 7 presents the conclusions, summarizes our achievements, and
outlines the future work.
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Chapter 2

RelatedWork

In this chapter, we review the fundamental concepts and techniques applied in the state-
of-the-art methods related to abnormal events detection, how previous approaches cap-
turemotion and patterns to identify anomalies, and how they side-step the problem about
the impossibility of having strongly-supervised training sets. Section 2.1 introduces the
state-of-the-art method regarding the extraction of combined motion and appearance in-
formation through video volume data. Section 2.2 reviews the recent method, used as a
baseline for this work, proposed in the weak supervision paradigm, where the instances
are labeled at the video-level, instead of frame-level. Section 2.3 introduces theGenerative
Adversarial Networks (GANs) concept, and how they can be molded to be applied in the
abnormal event detection problem. Section 2.4 summaries the Auto-encoder (AE) tech-
nique andhowprevious approaches employed them to detect anomalies in image analysis.
Section 2.5 reviews the skeleton-based concept in extracting humanmotion trajectories to
identify abnormal behaviors. Finally, section 2.6 presents the most relevant conclusions
in the state-of-the-art of abnormal events detection.

2.1 Spatiotemporal Features with 3D Convolutional Net-

works

Inspired by the deep learning breakthroughs in the image domain, it is proposed by
Tran et al. [TBF+15], a spatiotemporal feature learning by using deep Convultional 3-
Dimensional networks (C3D) (3D ConvNets). In the context of large-scale supervised
training datasets, they have created an effective video descriptor, that can be generic (rep-
resenting diverse types of videos, and still being discriminative), compact (e.g., help to
store, process, and retrieve tasks more scalable), efficient (in computing to process in
real-world systems) and simple to implement.

2.1.1 3D Convolution and Pooling

3D ConvNets can model temporal information better [JXYY12, KTS+14, TBF+15], com-
paring to 2D ConvNets since these are done only spatially. In figure 2.1, it is illustrated
the difference in convolutions, 2D convolution applied on an image and on multiple im-
ages (multiple frames as multiple channels) will output an image. Therefore, using 2D
ConvNets, most of the networks lose their input’s temporal signal after every convolu-
tion operation. 3D convolution is the only one that preserves the temporal information
obtaining an output volume as a result. 2D and 3D pooling apply the same phenomena.
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Figure 2.1: 2D and 3D convolution operations.

Karpathy et al. [KTS+14] share some similarities with Tran et al. [TBF+15] in terms
of using full frames for training ConvNets. This approach [KTS+14] used fusion models
with 2D convolutions, and those networks lost temporal information of the input signal
after the first convolution layer. The slow Fusion model in [KTS+14], on the other hand,
is the only one using 3D convolution, and for that reason, it performs better than the other
networks studied in [KTS+14].

2.1.2 Network Settings and Exploring Kernel Temporal Depth

In this approach [TBF+15], they split videos into 16-frame clips with an 8-frame overlap
between two consecutive clips and used them as input to the network. The final designed
3D ConvNet has 8 convolution layers, with 5 pooling layers, and 2 fully-connected layers,
with a softmax loss layer to predict tasks tested. The convolution kernel size is represented
by d × k × k, where d is kernel temporal depth, and k is spatial kernel size. Figure 2.4
represents the network architecture.
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Figure 2.2: C3D architecture.

To aggregate temporal information through deep networks, they got the best results with
constant kernel temporal depth of size 3 after experimented with two types of architec-
tures concerning the temporal depth: homogeneous temporal depth (the kernel temporal
depth is constant in all convolution layers) and varying temporal depth (where kernel
temporal depth is changing across the layers).
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2.1.3 Spatiotemporal Feature Learning

The training was done on the Sports-1M-dataset consisting of 1.1 million sports videos
with 487 sports categories, obtaining a model from scratch, and other fine-tuned on
Sports-1M from the model pre-trained on the I380K dataset. This last one performed
better than the model trained from scratch, and both C3D models obtained better results
compared to the state-of-the-art approaches, iDT [WS13] (improved dense trajectories)
and Caffe’s Imagenet pre-train model [JSD+14].

To understand what C3D was learning internally, they used the deconvolution method
by Zeiler et al. [ZF14], using Deconvnet (applying unpool, rectification, and filtering op-
erations to reverse a ConvNet). By visualizing the deconvolution of the conv5b layer, they
concluded that C3D begins by focusing on the appearance in the first frames and starts
tracking the motion in the following frames. Modeling not only appearance but also mo-
tion, this is where C3D differs from most of 2D ConvNets.

Extracting features every 16 frames, C3D can be used as a feature extractor to be applied
for other video analysis tasks, by extracting the sixth fully-connected layer (FC6) activa-
tions and obtaining a 4096-dim video descriptor for every 16 frames.

2.2 Weakly-supervised Learning

Abnormal situation scenarios are very diverse, and since we are analyzing video images,
the anomaly detection should be done with minimum supervision. This is due to the ef-
fort and time-consuming task of annotating the unpredictable number of hours of videos
needed to train a model to reach satisfying performances. For this reason, recently, Sul-
tani et al. [SCS18] proposes to learn anomalies through leveragingweakly labeled negative
and positive videos, i.e., training labels are at video-level (weakly-supervised learning)
instead of frame-level (strongly-supervised learning); therefore the anomaly detection
model only knows if it is a normal video or if the video contains somewhere an anomaly.

2.2.1 Multiple Instance Learning and Ranking Model

[SCS18] propose to learn anomaly through a deep Multiple Instance Learning (MIL)
framework, a type of supervised learning that receives a set of individually labeled in-
stances, and all the instances with the same label are grouped, as bags.

By exploiting both normal and abnormal videos, each video is divided into non-
overlapping temporal segments, where different segments make individual instances in a
bag. Thus, a video is labeled as a positive bag if at least one of the instances contains an
anomaly, and a video without any abnormal instance is labeled as a negative bag. As the
exact information of the positive instances is not known, the implemented ranking func-
tion can be optimized concerning the maximum scored instance in each bag, as followed:
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where 1⃝ is the hinge loss (for maximum-margin classification), YBj is the bag-level label,
z is the total number of bags, ϕ (xi) denotes feature representation of the video segment
i, b is a bias andw is the classifier to be learned (model weights).

In this approach [SCS18], the goal is to have high scores for abnormal videos and low
scores for normal videos. So they propose, as the annotation is video-level, a multiple
instance ranking objective function, used as loss function, based on ranking only the two
instances having the highest anomaly score respectively in the positive and negative bag:
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diction score of the abnormal and normal video segments i, respectively.

As a result of the highest anomaly score in the positive bag, the probability of being the
true positive instance is very high. On the other hand, the highest score in the negative bag
may look like an anomalous segment but is still a normal segment, which may generate
a false positive. The purpose of the multiple instance ranking objective function 2.2 is to
penalize both negative instances with high scores and positive instances with low scores.

Until now the underlying temporal structure of the anomalous video has been ignored,
to solve that problem, the instances’ scores in the positive bag should be sparse, meaning
that only a few segments may contain the anomaly. And because one video is a sequence
of instances, the anomaly score should vary smoothly between instances. This was done
by incorporating the sparsity and smoothness constraints on the instances’ scores:
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(2.3)

where 1⃝ denotes the temporal smoothness term, taking into account the next segment,
and 2⃝ represents the sparsity term.
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2.2.2 Feature Extraction

C3D video descriptor [TBF+15] was used as the feature extractor of their method, after
computing C3D features for every 16-frame video clip to all the dataset and extracting
the fully connected layer FC6 from the C3D network. This approach [SCS18] obtains one
video segment’s feature by splitting the video into 32 segments and taking the average of
all 16-frame clip features contained in each segment. Thus a bag contains 32 instances.

2.3 Generative Adversarial Networks

Generative Adversarial Nets (GANs) [GPAM+14], are based on two networks competing
with each other. One network is the generator (G), which has the purpose of generating
realistic data. The second network is the discriminator (D), which has the purpose of
discriminating generated data (from G) from real data. Both networks are trained with
unsupervised data to learn a generative model of data.

These networks take as input an image r and generate a new image g. D will try to
identify the real one and the fake one, while G will try to mislead D by producing even
more realistic images that are harder to distinguish.

2.3.1 Conditional GANs

Ravanbakhsh et al. [RNS+17] use the method proposed by Isola et al. [IZZE17] based on
Conditional Generative Adversarial Networks (cGANs), which aim to learn a conditional
generativemodel. In cGANs,G andD receive some extra conditioning input information,
and by adding a vector of features, it will control the output and guideG to figure out what
to do.

This approach [RNS+17] compute optical-flow from consecutive frames and train two
networks, NF→O to generate optical-flow from frames, and NO→F to generate frames
from optical-flow. Thus by training networks with only normal videos, they will not be
able to reconstruct/generate an abnormal event.

2.3.2 Abnormality Detection

For instances, by showing frames from a sidewalk where usually only people are allowed
to pass by, and if for some reason a vehicle is found at the scene, the optical-flow generated
by the frame with the vehicle, used as input to GF→O, will not be correctly reconstructed.
As well as, the frame generated by the real optical-flow, containing the motion of the ve-
hicle in the sidewalk, used as input to GO→F , the network will not be able to reconstruct
correctly the area where the car is located.
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From GF→O they obtain an optical-flow reconstruction and compare with the real cor-
responding optical-flow (O), using a simple pixel-to-pixel difference, will highlight the
differences between the real and the generated one. Likewise, they obtain the frame re-
construction from GO→F (O) and compare with the real frame (F ) by using a semantic
difference computed using another network, AlexNet [KSH12] pre-trained on ImageNet
Dataset [DDS+09] and extracting the fifth convolutional layer (which reproduces the in-
formation in a sufficiently abstract space). Fusing both normalized differences resulted
from GF→O and GO→F (O) with the real O and F they are able to obtain the abnormality
heatmap. The abnormality is detected by analyzing if the frame’s heatmap contains at
least one predicted abnormality pixel.

2.4 Spatiotemporal Auto-encoders

Auto-encoders (AEs) are deep learning algorithms that aim image reconstruction, mean-
ing that whatever image we give to the input node, the network will generate the same
result as the input.

AEs are composed of 3 main components: the encoder, responsible for compressing
the input data, the bottleneck, representing a compressed low dimensional of the input,
and the decoder, which will decompress the encoded data. The importance of image re-
construction is the compressed representation of the input data. For instance, if we have
a feature vector of size 2048, learning an AE to be capable of reducing its size to 64 and
reconstructing this feature vector from the bottleneck, means that we could transmit this
compressed low dimensional representation through our network, reducing the cost of
bandwidth and being able to reconstruct the image in the end with our decoder.

x Encoder z Decoder x′

Bottleneck

Figure 2.3: Auto-encoder architecture.

In real-world situations, when an abnormal event occurs, the most recent video frames
will usually be much different from previous frames. Taking into account this principle,
Chong and Tay [CT17], using only videos with normal situations scenarios, proposed to
train a spatial feature extractor, extracting spatial features of every ten consecutive frames,
and feed those features into a temporal AE using a non-linear activation function to min-
imize the reconstruction errors, from the decoder, in normal events. The hypothesis is
that, since the AE was trained only with normal videos when an abnormal event occurs,
it should not be able to reconstruct the scene.
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Also, in the reconstruction proposal, Hasan et al. [HCN+16] extracted the motion fea-
tures from the video frames consisting of Histogram of Oriented Gradients (HOG), and
Histogram of Optical-Flows (HOF) fused both by employing as a baseline of improved
trajectories the work by Wang and Schmid [WS13] and learning the regular motion sig-
natures by feed those features to the fully-convolutional neural network based AE. They
also approached the problem from the one-class classification perspective (a term coined
by Moya and Hush [MH96]), training the AE with exclusively normal events, and assum-
ing its incapability of abnormal events reconstruction, the irregular motions are detected
from their high reconstruction errors.

2.4.1 Variational Auto-encoders

Instead of only learning a model to represent the input data (z, compressed data) as AEs,
the goal of a Variational Auto-encoder (VAE) is tomodel a probability distribution of some
latent variables (z) which we can sample from the probabilistic encoder/distribution Z ∼
qϕ(z|x) and decode/generate X ′ ∼ pθ(x|z) new input samples. So it is designated as a
generative model like, for instance, GANs.

x

µ

σ

z

Probabilistic Decoder

x′

Bottleneck

Probabilistic Encoder
qϕ(z|x)

pθ(x|z)

Figure 2.4: Variational auto-encoder architecture.

In the generative model paradigm, Wang et al. [WQL+18] proposed to extract the frame
features using a pre-trained, on Pascal VOC [EVGW+], a fully convolutional neural net-
work built based on VGG-16 [SZ14], obtainingmotion features of two consecutive frames.
Both motion and appearance features are used as input to a VAE removing unnecessary
features. The filtered ones are fed into a second network combining U-net [RFB15] and
VAE, adding skip connections across layers between low-level features and high-level fea-
tures, linking the encoder’s layers to decoder’s layers to avoid information loss, which is
inevitable in the decoding process. Since both networks are generative models, and by
training them only with normal events, the anomaly is detected by the reconstruction er-
ror.

2.5 Skeleton-based Trajectories

The patterns of humanmovements and behaviors in surveillance videos can also be mod-
eled through leveraging 2Dhuman skeleton-based trajectories. Those features consist of a
collection of humanbody joints’ locations in the spatio-temporal field. This technique also
avoids all appearance noises that images can contain, being modular, semantically rich,
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and very descriptive, and consequently, concentrating the training model exclusively on
human behavior.

2.5.1 Crowd Pose Estimation

Multi-person pose estimation lies in the extraction of skeleton pose features from images,
consisting of capturing and estimating the locations of multiple joints in the human body
(shoulders, elbows, hands, hips, knees, ...), as illustrated in Figure 2.5.

Figure 2.5: Skeleton pose estimation example.

Recent works [LWZ+19, FXTL17, XLW+18] use a pretrained object detector to detect
humans and obtain the respective bounding boxes. Once obtained, the images are fed
into a Single Person Pose Estimation (SPPE) [TS14, WRKS16], calculating the heatmap
of the image proposal inside the bounding box to indicate human joint locations. In
crowded scenarios, the problem lies in being highly likely to obtain other human parts
inside the bounding box of another human since SPPE is limited to a human proposal.
Li et al. [LWZ+19] propose a new heatmap loss that suppresses the interference joints
that do not belong to the bounding box’s target person, by considering the Mean Squared
Error (MSE) between the output heatmaps of different persons and both heatmap target
person’s joints and interference joints. Therefore, each joint has a confidence associated
with each bounding box.

2.5.2 Pose Flow Tracking

To obtain skeleton-based trajectories, not only we need to estimate the skeleton pose but
also keeping track of that respective person. Themost simply heuristics is the Intersection
over Union (IoU) of boxes, which only by itself will most likely fail, for instance, if some
person moves fast enough for boxes not overlapping over consecutive frames, and as
abovementioned in crowded scenes where boxes may not be related with the respective
skeleton pose.

Xiu et al. [XLW+18] proposed to use a pose tracker based on Pose Flow (PF), which
consists of designing an optimization framework to build the relationship between cross-
frame poses and build PFs. A PF Non-Maximum Suppression (NMS) (PF-NMS) is then
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responsible for reducing redundant and reconnect temporal disjoint PFs. Analyzing sim-
ilarities between poses in the same frame and distance between poses from consecutive
frames, [XLW+18] proposes a PF-builder that focuses on the overall confidence score of a
single PF, keeping track of the previous trajectories regarding the samePF to resist sudden
occlusions andmotion blur. Since there is a high likelihood of multiple PFs indicating the
same person in multi-person scenarios, extracting the overlapping temporal sub-flows,
allows them to perform an NMS scheme (IoU comparison betweenmultiple PFs) to select
the PF with maximum confidence score (after confidence summation of the PFs).

2.5.3 Learning Regularity

Once extracted the dynamic skeleton features, Morais et al. [MLT+19] propose a method
to learn only the normal patterns of human behavior, learning its regularity through de-
composing the skeleton trajectories into global body movement, tracking the dynamics of
the whole body in the scene, and local body posture, describing the internal deformation
of the skeleton in the respective bounding box.

To analyze both components, [MLT+19] developed a Message-Passing Encoder-
Decoder (MPED) Recurrent Neural Network (RNN) (MPED-RNN), consisting of two
branches, each one, responsible to the respective component, is composed of a single-
encoder-dual-decoder architecture with three RNNs, and by employing a cross-branch
message-passing mechanism, it does not only model each individual dynamics compo-
nent but also interdependencies between them. For its similar performance to Long Short
Term Memory (LSTM) [HS97], they used gated recurrent units in every segment of the
MPED-RNN, where a segment from one branch receives the information from the other
branch of its internal state at the previous time step.

With both single-encoder-dual-decoders training with only normal skeleton-based tra-
jectories, the encoders are able to learn a compact representation to reconstruct nor-
mal human behavior. Therefore, in the testing phase, the anomaly is detected when the
MPED-RNN cannot properly reconstruct the abnormal dynamics of the human body.

2.6 Conclusion

This chapter presented a comprehensive analysis of the concepts in anomaly detection
and the state-of-the-art methods in this kind of technology. First, we reviewed in detail
how the recentmethod of feature extraction in 3-dimensional volumesworks, as the state-
of-the-art in this feature extraction domain, we employed this feature descriptor for the
developments of our proposals. Subsequently, we presented a detailed review of the state-
of-the-art in weak supervision learning, and how the feature descriptor was applied in this
type of learning. Afterward, we detailed the most important concepts regarding different
methods of the state-of-the-art in the unsupervised learning domain. Despite the interest-
ing approaches, there are some disadvantages in applying unsupervised learningmethods
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in this type of challenge, since every method only analyze normal patterns. We detected
that in this type of learning, it is a fundamental request that the whole training set should
be homogeneous, which means the videos are captured in invariant locations; otherwise,
the unsupervised learning algorithms will fail in an almost catastrophic way, since train-
ing AEs or GANs to learn normal patterns in multi-variate scenarios is extremely difficult
due to its heterogeneity of the inputs. For this reason, we will employ the state-of-the-art
in weakly-supervised learning as the main baseline of our methods.
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Chapter 3

Iterative Weak/Self-Supervised Learning
Framework

In standard supervised classification problems, the labels of all negative and positive in-
stances are given, and the classifier can be learned using maximum-margin classification
based loss, used for Support Vector Machine (SVM) [CST99]. Since obtaining tempo-
ral annotations for videos is very effort and time-consuming, this chapter describes an
iterative system composed of two independent networks based on the weakly and self-
supervised learning paradigm. Regarding the principle that a model trained with videos
labeled frame by frame, where the exact information is provided (strong supervision),
will achieve better performance than training with weakly labeled videos, we try to at-
tain, as much as possible, those performances as if it was a strongly-supervisedmodel. By
avoiding the annotation of anomalous segments or clips in training videos, these coupled
deep-learning networks were designed to self-supervise non-annotated data at both weak
and strong level annotations. It should be noted that the proposed method [DP20] relies
on one condition: aside from having access to the weakly supervised set, an additional
unlabelled set of videos should be available with the purpose of being annotated by the
model itself.

Upon the work of Sultani et al. [SCS18] and to infer a model that distinguishes between
normal and abnormal segments, a weakly supervised training set is used. Also, a novel
termwas introduced into the basis loss function (2.3) to fortify the response score’s spread
in the unit interval, and being able to discriminate the most reliable correctly classified
instances.
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Figure 3.1: Cohesive pictorial view of the iterative weak/self-supervised learning framework.

Figure 3.1 presents the step-by-step diagram of the iterative learning framework proposed
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in this work. The blue and red colors represent the two kinds of components used: at
first, we adapted the Sultani [SCS18]’s method to spread its prediction scores in the unit
interval as much as possible (WS). Next, a Bayesian framework is responsible for filtering
out the instances coming froman unlabelled data set that is deemed to be themost reliably
classified, which are used as input of the self-supervised learning network working at the
frame level (SS). Once again, the responses predicted by this expert are used by a second
Bayesian framework, that filters out the videos to be used in the next iteration of the first
framework.

For consistency purposes, the notation adopted is as close as possible to the used by
Sultani et al. [SCS18]. V i

u denotes the ith segment of a video (bag) Bu, where u ∈ {a, n}
referring respectively videos with abnormal and only normal events. B(t) = {B1, ...,Bnw}
denotes a learning set of nw videos at iteration t (used as learning data by the WSmodel),
andV(t) = {V1, ...,Vns} is the learning set composed ofns segments, used by the SSmodel.

3.1 Weakly-supervised Network and Novel Term

Based upon thework of Sultani [SCS18], the proposed approach learns anomalies through
a deep MIL framework by considering the input videos as bags. In a binary way, a bag is
annotated as a positive instance, if at some point, it contains an abnormal event, while a
bag is annotated as a negative instance if it surely contains solemnly normal segments.

In spite of the network learning to predict high scores for anomalous segments applying
the loss function described in (2.3), during our experiments, we noticed that typically it
produces extremely peaked distributions for both the normal and abnormal scores, turn-
ing hard to perceive the most confidently correctly classified instance since there is still a
large number of false-negative and false-positive instances. In order to optimize the per-
formance of the Bayesian framework, it was essential to ensure that the response scores
for the most evidently normal and abnormal segments were close to the extremes of the
unit interval, while all the responses for the doubtful observations should spread as much
as possible among the intermediary values. Therefore, to achieve a better distribution for
our purposes, an entropy-based term was added to the loss function (2.3), given by:

H (Bu) = −
t∑

i=1

P
(
f(V i

u)
)
log

(
P
(
f(V i

u)
))

, (3.1)

where Bu
def
= {Ba ∪Bn} denotes all the videos in the batch, f

(
V i
u

)
represent the prediction

scores of abnormal and normal segments in the batch, and P
(
f(V i

u)
)
approximates the

density of the f(V i
u) scores. We divided the unit interval into bins of equal width and

counted the number of values in each bin:
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bi =
n∑

j=1

1{ i−1
n

≤f(Vj
u)≤ i

n
},∀i ∈ {1, . . . , t}, (3.2)

where 1 denotes the characteristic function. After obtaining the bi statistic, values were
normalized to have sum equal to one, i.e., to fit a probabilistic distribution: b∗i =

bi∑
j bj

. In

practice, the b∗i values were used to approximate P
(
f(V i

u)
)
.

Themain impact of the novel term is illustrated in Fig. 3.2, with the vertical axis provid-
ing the b∗i values per bin, and the horizontal axis denoting the codomain of the classifier,
where the blue and red bins represent the negative and positive scores, respectively. The
left plot regards Sultani et al. [SCS18]’s loss function, while the right plot provides the
values for the loss function of this proposal. For visualization purposes, the vertical axis
is plotted in logarithmic scale.

0.00 0.25 0.50 0.75 1.0010 4

10 3

10 2

10 1

100

(a) Sultani et al.’s loss.
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(b) Proposed loss with the novel term.

Figure 3.2: Comparison between histograms in relation to the sample entropy term.

By incorporating the entropy-based term (3.1) to the basis loss function (2.3) and also
taking into account the regularization terms that minimize model weights, our complete
objective function becomes:

L(W) = l (Ba,Bn)− λ3

3⃝︷ ︸︸ ︷
H (Bu)+λ4∥W∥F ,

(3.3)

whereW represents themodel weights and 3⃝ avoids peaked distributions for normal and
abnormal events.

As stated above, the rationale of (3.3) is that less peaked distributions of scores will
produce higher entropy values. Applying the subtraction of this term in the basis loss will
reduce the cost function and, at the same time, making it harder to reach the extremes
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values of the unit interval, even if it is less frequent to obtain scores close to those values,
the important point is to ensure that only the most significant normal and abnormal in-
stances attain values close to the extremes. On the other hand, the uncertain observations
will be dispersed between intermediary values, consequently achieving a suitable distri-
bution shape, which is the key feature for selecting the more likely correctly classified
instances that are iteratively added to the next generation of the learning sets, by means
of the Bayesian framework.

3.2 Bayesian Classifiers

The proposed approach is based on Bayesian classifiers to obtain, among the unsuper-
vised data, the reliability for each classified instance. In a self-supervised fashion, both
Bayesian classifiers were designed specifically to add to the next generation of the learning
set, only the instances with extreme high beliefs, either for the WS and SS models. Since
our coupled deep-learning networks are independent and working at distinct levels of su-
pervision, two Bayesian classifiers are employed in our method. First, the weak one that
receives the scores produced by the WS expert, filtering the video segments (labeling in a
strongly-supervised manner) that should be used in the SS training. Second, the strong
counterpart, that receives the scores from the SS expert (at the segment level), and based
upon the scores’ pattern of each unlabelled video, selects those that should be used in the
next iteration of the WS model (labeling in a weakly-supervised fashion).

Every self-supervision technique requires a pre-taskwielded as a baseline, which, in our
case, both classifiers use the response scores from the validation set (where ground-truth
is available), to estimate the exact degree of belief of a classified instance, used to obey the
following probability calculus:

Pw

(
y|f(V i)

)
=

P
(
f(V i)|y

)
P (y)

P
(
f(V i)

) , (3.4)

where y ∈ {a, n} represent the abnormal and normal classes. A Gaussian Kernel Density
Estimator (KDE), from two distributions (negative and positive scores), was used tomore
accurately approximate the conditional densities P

(
f(V i)|y

)
, with Scott’s rule [Sco15] for

bandwidth selection. Even though there is typically a significant imbalance between the
number of normal and abnormal instances, we empirically adjusted the priors to P (a) =

P (n) = 0.5, avoiding giving excessive weight to the normal instances.
Figure 3.3 compares the posteriors per class, regarding the histograms in Figure 3.2 and
according to the Sultani et al. [SCS18]’s loss and ours, when the entropy term was also
considered. The blue lines represent the normal events, and the red lines represent the
abnormality scores. As it is notorious, our proposal’s immediate effect is to obtain a more
evident separation between the degrees of belief for both classes near the extremes of the
unit interval (particularly in the upper extreme).
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Figure 3.3: Comparison between the posteriors probabilities obtained by the Bayesian classifier.

Now that our weak Bayesian classifier is able to discriminate the response scores qual-
itatively from the unsupervised set, formally, the ith segment is selected for the next gen-
eration of the SS learning data according to the rule:

V(t+1) def
= {V i ⇐⇒ Pw

(
y|f(V i)

)
≥ τ1}, y ∈ {a, n}, (3.5)

i.e., if the posterior for either classes is higher than a threshold.

In the counterpart to also supply more data to the WS learning set, the strong Bayesian
classifier is responsible for deciding at the bag (video) level, receiving the video segments
scores and classifying that video globally as normal or abnormal (weak supervision):

Ps

(
y|f(Bi)

)
=

P
(
f(Bi)|y

)
P (y)

P
(
f(Bi)

) , (3.6)

where y ∈ {a, n} represent the abnormal and normal classes. We initially considered the
application of simple fusion rules (such as max or prod), on the response scores of each
video, for obtaining the degree of belief per video. However, the poor levels of perfor-
mance led to the choice of introducing a simple feed-forward network classification with
four layers and 256 : 196 : 128 : 1 architecture for the estimation of Ps

(
y|f(Bi)

)
.

This network (described as Pattern Classifier in Figure 3.1) is trained from scratch with
the result scores from the SS expert performed through the validation set, in each sys-
tem’s generation to be able to keep up accordingly to the behavior of the SSmodel’s evolu-
tion. Finally, and in a waymuch similar to the weak Bayesian classifier, only the classified
videos that provide the extreme degrees of belief are selected to the next iteration of the
WS learning set:

B(t+1) def
= {Bi ⇐⇒ Ps

(
y|f(Bi)

)
≥ τ2},∀i ∈ B(t), y ∈ {a, n}, (3.7)
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The τi values were adjusted empirically, according to the performance observed in a vali-
dation set.

3.3 Self-supervised Network

Typically, a network trained with videos labeled at the frame-level, where we provide the
exact information about the anomalies event, known as strongly-supervised learning, will
achieve better performance than a model trained with weakly labeled videos. Since our
weak Bayesian framework is now capable of providing that exact information in the most
trusted instances, we developed a network to receive those instances.

Based upon the recent technique of self-supervised learning, the SS model is trained
at the segment level (strong-supervised learning), where there was no human supervi-
sion in the learning set of this expert, being annotated only by the combination of the WS
model and the weak Bayesian classifier with the most likely correctly classified segments.
The main purpose of this model is to achieve high performances similar to a frame-level
supervision done manually by a human.

This network receives C3D [TBF+15] feature vectors of 4096 components, describing
video segments of each 16 frames of the respective video, and predicts the abnormality of
that segment, representing the likelihood of containing an abnormal event. With a 3-layer
fully connected architecture, this expert is composed of 512 units in the first layer, 32 units
in the second one, and 1 unit in the output layer. We used the ReLU [NH10a] activation
function for the two first layers and a sigmoid activation in the output neuron. A binary
cross-entropy loss drove the learning process of this model.

Once our SSmodel is trained at the segment-level, we compute it through the unlabeled
data and use our pattern classifier to analyze the response scores, from the validation set,
and learn an efficientmodel to discriminate negative bags from positive bags based on the
patterns of the SS model’s scores in each video. Finally, our strong Bayesian framework
will analyze the classified bags from the pattern classifier, providing additional weakly-
labeled videos to the training set of our WS model. Since the WS model’s performance is
better than the previous iteration, the whole process is repeated until one of the networks’
performance stabilizes.
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Chapter 4

Proposed Distribution-Based Loss

As already observed in chapter 2, in the world of ML, we can distinguish two main fields:
supervised and unsupervised learning. The main difference between these two types of
learning resides in the nature of the data, and how approaches handle it. In supervised
learning models, the algorithm learns based on a labeled dataset, providing its output
that the model use to calculate its loss and evaluate its accuracy on the training set. On
the other hand, computationally more complex, unsupervised learning algorithms learn
with unlabeled data, whichmeans only the input is given without any key answer to relate
with. An important concept concerning unsupervised learning is clustering. It involves
grouping a set of data points (denominated as a cluster), which are related to some features
that distinguish them from other data points (consequently, other clusters), i.e., finding
structures or patterns in a set of uncategorized instances.

A popular clustering algorithm, known as K-means, is a very powerful technique of un-
supervised methods, consisting of updating the model’s parameters of each cluster iter-
atively, by computing the mean (centroid) of each cluster regarding its distance to each
data point and repeating the process until some convergence criterion is reached. Each
data point is then labeled as part of one and only one cluster, concerning its closest cen-
troid. Considered as a hard clustering technique, the K-means algorithm has some lim-
itations regarding the miss information of an uncertainty measure or probability associ-
ated with a data point to each cluster. For this reason, we employed a Gaussian Mixture
model (GMM), which is a unsupervised learning algorithm based on the principle that
every finite number of data clusters can be generated from a mixture of a finite number
of Gaussian distributions. Therefore, a collection of data can be represented by several
Gaussians, each one identified by k ∈ {1, . . . ,K}, whereK denotes the number of clusters
of our dataset, which means the number of kernels in our dataset’s Gaussian mixture dis-
tribution. Consisting of a soft clustering technique for correlating data points to clusters,
GMMs rely on a probabilistic estimation of a point belonging to a cluster; thus, each data
point has a likelihood associated with each cluster.

This chapter introduces a GMM-based approach for anomaly detection in video surveil-
lance footage, under the MIL paradigm similar to the WS expert described in chapter 3,
that predicts high anomaly scores for anomalous video segments. The rationale is that,
upon a video containing an anomaly, the predicted scores should be near the lower ex-
treme of the unit interval when no abnormal event is observed, and when an anomaly
event occurs, the predicted scores should be higher, near the upper extreme, following
a two-kernel distribution-like comprised between the unit interval. On the other hand,

21



upon a normal video, the predicted scores should only concentrate near the lower ex-
treme, meaning that using a two-kernel GMM, both kernels will achieve the same fitting
as a normal distribution. For that reason, we introduce a newMIL solution by employing
the estimated parameters, of both two-kernel GMM and normal distribution, in our novel
loss function. As demonstrated in figure 4.1, the left plot regards the predicted scores
upon an anomaly event in a real-case scenario, while the right plot illustrates the respec-
tive histogram of the predicted scores (higher the bin, higher the data points’ density),
and how a GMM algorithm, with K = 2, adjusted its Gaussian functions to the predicted
data points.

(a)Model’s prediction scores in response to an
anomaly event.
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Figure 4.1: Predicted scores and respective distribution of a video containing an anomaly.

For consistency purposes, the annotation adopted is as close as possible to the used in
chapter 3. V i

u denotes the predicted score of the ith segment of a video (bag) Bu, where
u ∈ {a, n} referring respectively videos with abnormal and only normal events, and each
Bu is composed of a fixed number of segments. B(t) = {B1, ...,Bnw} denotes a learning set
of nw videos at iteration t (used as learning data by the GMM-based approach).

4.1 Definitions and Expectation-Maximization Algorithm

As the name implies, a Gaussian Mixture is a distribution function comprised of K Gaus-
sians, known as kernels. In the mixture, each Gaussian k is composed of the following
parameters:

• The mean µ of the kernel, similarly to a centroid in other clustering algorithms.

• The standard deviation σ (for one-dimensional data) or covariance matrix Σ (for
multivariate scenario) that defines its width.

• The mixing coefficient π that defines the weight of the distribution, i.e., the prior
probability of a random variable associated to the kernel itself.

It can be observed from the histogram’s bins, that the densities are higher in the extremes
of the unit interval, and for that reason, the GMMmeans (µ1 and µ2) were adjusted to the
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proximity of the extreme values. Likewise, σ1 is smaller than σ2 since, as also expressed by
the histogram, the predicted scores are less scattered in the blue Gaussian, in comparison
to the second Gaussian (red).

In our case, where we are only operating with a single variable (the prediction score V i
u

of a segment video), the Probability Density Function (PDF), in one-dimensional space,
is given by:

N
(
V i
u|µk, σ

2
k

)
=

1

σk
√
2π

e
− 1

2

(
Vi
u−µk
σk

)2
, (4.1)

which can be interpreted as the probability density of a predicted score falling within
a specified Gaussian distribution. As abovementioned, figure 4.1b exemplifies a two-
componentmixturemodel, where eachGaussian describes the predicted scores of a video,
Bu, comprised in each of the two clusters. Therefore, the π parameters of both kernels
must meet the following condition:

K∑
k=1

πk = 1 (4.2)

Accordingly to both equations (4.1) and (4.2), we can define a Gaussian mixture as the
following summation of Gaussian distributions:

G(V i
u|γ) =

K∑
k=1

πkN (V i
u|µk, σ

2
k), (4.3)

which means the probability density of a random predicted score coming from a GMM
configuration γ.

In order to ensure that each Gaussian fits the predicted points, defined as maximum
likelihood, we need to determine the optimal configuration γ values for the GMM param-
eters to attain its maximum likelihood. In frequentist probability [Ven88], models are
usually learned by employing the Maximum Likelihood Estimation (MLE) techniques,
which maximizes the probability/likelihood of the observations given the parameters of
themodel by differentiating the logarithmof the joint probability of all observations, given
by:

ln
( N∏
i=1

G(V i
u|γ)

)
=

N∑
i=1

ln
( K∑
k=1

πkN (V i
u|µk, σ

2
k)
)
, (4.4)

where N represents the number of predicted scores in Bu. Unfortunately, this solution
for mixture models is usually analytically impossible, due to the derivative of the log-
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likelihood of multiple Gaussians. To side-step this issue, we employ an iterative method,
denominated as the Expectation-Maximization (EM) algorithm, which is typically used
when (as shown below) we can calculate the closed-form expressions of the model pa-
rameters. Consisting of a numerical technique for maximum likelihood estimation, and
since the EM algorithm strictly increases the maximum likelihood after every iteration, it
is guaranteed to reach a local maximum.

4.1.1 Expectation-step

The expectation-step is responsible for calculating the expectation of the Gaussian kernel
k assignment for every predicted score V i

u ∈ Bu given the mixture model parameters γ,
which is similar to the evaluation of our model.

Simplifying, instead of estimating: ”given a Gaussian k, what is the probability of
generating a predicted score V i

u ?” (4.1); we will need to estimate: ”given a predicted
score V i

u, what is the probability it has been generated by a Gaussian k ?”, expressed as
P (gik = 1|V i

u, γ). gik would denote a latent variable that takes only two possible values,
one if V i

u came from kernel k, and zero otherwise. From the Bayesian inference, we know
that:

P (gik = 1|V i
u, γ) =

P (V i
u|gk = 1)P (gk = 1)∑K

n=1 P (V i
u|gn = 1)P (gn = 1)

, ∀i ∈ Bu (4.5)

Subsequently, as abovementioned and denoted from our previous equations (4.1) and
(4.2), we already defined the following components:

P (V i
u|gik = 1) = N

(
V i
u|µk, σ

2
k

)
and P (gik = 1) = πk (4.6)

Replacing both components from (4.6), our final Bayes’ theorem (4.5) becomes:

P (gik = 1|V i
u, γ) =

πkN
(
V i
u|µk, σ

2
k

)∑K
n=1 πnN

(
V i
u|µn, σ2

n

) = γ(gik),∀i ∈ Bu (4.7)

With equation (4.7) evaluating our actual GMM configuration, we are able to obtain the
information about how good is this K mixtures configuration fitting the predicted data
points.

4.1.2 Maximization-step

With the expectation calculated in the expectation-step, the maximization-step will max-
imize it with respect to the prior GMM parameters γ, which consists of updating, in each
mixture component k, the new values for µ(t+1)

k , σ(t+1)
k and π

(t+1)
k in order to achieve a

better fitting in the next iteration, t+ 1.
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To achieve maximum likelihood, and by making use of the log of equation (4.3) with
the expectation of equation (4.7), we obtain the following responsibilities from the differ-
entiation with respect to each parameter:

π
(t+1)
k =

∑N
i=1 γ(gik)

N

µ
(t+1)
k =

∑N
i=1 γ(gik)V i

u∑N
i=1 γ(gik)

σ2(t+1)

k =

∑N
i=1 γ(gik)(V i

u − µk)
2∑N

i=1 γ(gik)

(4.8)

Using these revised values to determine the new expectation in the next EM iteration, the
entire iterative process repeats until some convergence criterion is reached, usually when
the log-likelihood stabilizes, meaning that we have reached a local maximum.

4.2 Anomaly Detection and Ranking Model

The proposed Gaussian Mixture based approach, working under the same MIL paradigm
as theWSmodel in section 3.1, is built upon the assumption that abnormal videos usually
contain both normal and abnormal scenarios, while normal videos only show ordinary
events, the purpose of this approach is to achieve a two-kernel distribution, in positive
bags, and a single-kernel distribution (normal distribution), in negative videos. We intro-
duce anovel loss function, which operates at the distribution-level of theGMMfitted to the
predicted scores in each negative and positive bag, and by employing the configurations of
the normal andmixture distribution in every bag, we will penalize the model if it does not
shape a score distribution accordingly to the aforementioned. A cohesive pictorial view
of the whole proposal’s framework is given in figure 4.2, where the blue and red elements
represent a negative scenario (containing no anomaly) and positive scenario (containing
somewhere an anomaly), respectively—starting by dividing the training videos into a fixed
number of temporal video segments, which make instances in a bag. After extracting the
fully-connected (FC6) activations of the C3D [TBF+15] method for every video segment,
a Fully Connected Neural network (FCN) is trained bymaking use of a novel cost function
which computes the loss between the normal (black line) and Gaussian mixture (blue and
red line) parameters in the negative and positive bags.
With the previously described EM algorithm, we are capable of fitting our two-kernel
GMM to any predicted score distribution, intending to extract the mixture parameters,
once fitted. Since abnormal videos should not have the same distribution scores as nor-
mal videos, we also gather information about the normal distribution of the instances’
scores.

In this GMM-based proposal, we address the anomaly detection as a regression prob-
lem. We need the anomaly videos to have both low scores and high scores, while the
normal videos should keep low scores. Since we are operating with a normal distribution
and a two-kernel mixture distribution, it means that we end up with the parameters of
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Figure 4.2: The flow diagram of the proposed Gaussian Mixture Model-based approach.

three Gaussians, {µ0, σ0} from the normal distribution, {µ1, σ1} from one kernel in the
mixture, and {µ2, σ2} from the other kernel in the mixture, (as shown in figure 4.2).

The aim is to attainmaximumdivergency between the two kernels of themixture in pos-
itive bags, and minimum divergency in negative bags. Therefore, the obvious conditions
to satisfy are a ranking loss to encourage a higher mean value in one kernel compared to
the other for anomaly videos, and equality between Gaussians for normal videos, such as:

G(Ba)
def
= {µj < µk},∀j, k ∈ {1, . . . ,K} ∧ j ̸= k, (4.9)

G(Bn)
def
= {µj = µk},∀j, k ∈ {1, . . . ,K} ∧ j ̸= k, (4.10)

where G (Ba) and G (Bn) represent the GMM in positive and negative bags, respectively,
and K denotes the number of kernels in our mixture.

Consequently, condition (4.9) reaches its maximum divergency when µj = 0 and µk =

1, while condition (4.10) reaches its minimum divergency if both mean values are equal.
Considering that we need to penalize the model, whenever the above conditions are not
satisfied, the straightforward approach for the objective function would be to incorporate
both conditions in a hinge loss, given as follows:

l
(
G(Ba),G(Bn)

)
= max

(
0, 1−

1⃝︷ ︸︸ ︷∣∣µa
k − µa

j

∣∣+ 2⃝︷ ︸︸ ︷∣∣µn
k − µn

j

∣∣ ), (4.11)

which means 1⃝ reaches its maximum value when each mean values of the kernels in
G (Ba) are in both extremes of the unit interval, maximizing the divergence of condition
(4.9). On the counterpart, 2⃝ reaches its minimum value when both means in G (Bn) have

26



the same value, minimizing the divergency of condition (4.10).

In spite of the above ranking function producing low and high scores for anomaly videos
and produce minimum divergent scores in normal videos, until now the mean values of
normal videos despite being equals, there is no constraint towhich value reach. Therefore,
sincewe need to enforce negative bags’ scores only in the lower extreme of the unit interval
and still satisfying condition (4.9) for positive bags, we measure the parameters of the
normal distribution of the predicted scores, and by incorporating these parameters of the
normal distribution, the loss function becomes:

l
(
N (Bu),G(Bu)

)
= max

(
0, 1−

1⃝︷ ︸︸ ︷
max

(
µa
0,
∣∣µa

k − µa
j

∣∣)+ 2⃝︷ ︸︸ ︷
max

(
µn
0 ,
∣∣µn

k − µn
j

∣∣) ), (4.12)

where 1⃝ still reach its maximum value when the divergency of condition (4.9) is maxi-
mized, since µj < µ0 < µk. As well as, 2⃝ will only reach its minimum value when all
mean values are in the lower extreme, minimizing the divergence of condition (4.10) and
satisfying the condition of low scores on negative bags, meaning that if the mean values
of the mixture only satisfy condition (4.10), the greater the mean value, the greater the
penalty, due to the normal distribution.

With this MIL ranking loss, the error is back-propagated from the Gaussians diver-
gences in both negative and positive bags. We presume that by training on a large training
set, the FCNwill learn a generalizedmodel predicting high scores for anomalous segments
in positive bags (as shown in figure 6.6). Furthermore, in comparison to the considered
state-of-the-art method [SCS18], which only operates on the maximum scores level in
each bag, we expect that a GMM can preserve better information regarding all scores in a
bag, and consequently achieving a better distribution score in both negative and positive
bags (see figure 6.3). Finally, our complete objective function is given by:

L(W) = l
(
N (Bu),G(Bu)

)
+ λ1∥W∥F , (4.13)

whereW is the classifier to be learned.

4.3 Ranking Model vs. Negative Log-Likelihood Model

As previously stated, this GMM-based loss is based on the principle of the different di-
vergences between the distribution scores of both normal and abnormal videos. On this
basis, upon further research, we also studied a new alternative strategy for our ranking
model. With the goal of dismissing the imposed conditions to mold distribution shapes,
we employed the Negative Log-Likelihood (NLL) to attain a refinedmodel fitting with any
conditions engaged regarding the predicted scores directly.
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The likelihood function consists of measuring the Goodness of Fit (GOF) of a distribu-
tion model to a sample of data points, higher the NLL value, better the fitting. In this
strategy, the rationale is that a GMM fitted to a positive bag will result in a two-kernel
mixture with drifted apart kernels and achieving a higher NLL value than a normal distri-
bution. On the counterpart, a GMM adjusted to a negative bag will result in a two-kernel
mixture with no divergence between the kernels and, consequently, achieving a similar
NLL value compared to a normal distribution. The main idea is to shape two different
distributions with minimized and maximized divergence for negative and positive bags,
respectively, entirely by the model itself just by analyzing the likelihood of the outcome.
Accordingly to equations (4.1), (4.3) and (4.4), we can define our negative log-likelihood
calculations, which are given by:

nll
(
N (Bu)

)
= ln

( N∏
i=1

N (V i
u|µ0, σ

2
0)
)

(4.14) nll
(
G(Bu)

)
= ln

( N∏
i=1

G(V i
u|γ)

)
(4.15)

where N denotes the total number of predicted scores in our bag, Bu. With the above
equations, we are capable of comparing the GOF of our twomodels (normal andmixture),
concerning each bag.

With the purpose of shaping a normal and two-kernel distribution for negative and pos-
itive bags, respectively. The straightforward approach would be the ratio between both
NLL values in each bag, to encourage divergence in positive bags and similarity in nega-
tive bags, such as:

l
(
N (Bu),G(Bu)

)
= max

(
0, 1−

3⃝︷ ︸︸ ︷
nll

(
N (Bn)

)
nll

(
G(Bn)

) +

4⃝︷ ︸︸ ︷
nll

(
N (Ba)

)
nll

(
G(Ba)

) )
, (4.16)

where 3⃝ reaches its maximum value when the fitting of both normal and Gaussian mix-
ture distributions are identical, meaning that all three Gaussians have the same param-
eters, thus, the same NLL. On the other hand, 4⃝ reaches its minimum value when the
fitting of a two-kernel distribution is better than a normal distribution, ending up with a
lower NLL from the normal distribution and a greater NLL from the mixture.

Thismeans, the better a two-kernel distribution fits the predicted scores, more the ratio
between NLLs will tend to zero (minimizing the error in positive bags and maximizing it
in negative bags), while the ratio between NLLs tends to one the more similar are the
normal andmixture distributions (minimizing the error in negative bags andmaximizing
it in positive bags).

Unfortunately, there is a misconception with the described loss function regarding the
maximumNLL value for the two-kernel mixture. During our experiments, we notice that
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the NLL value, concerning the mixture, reached its maximum value with extremely un-
balanced mixing probabilities between the two kernels, πk. The unbalanced πk verified
was 97% to 3%, meaning that the NLL’s mixture value reaches its maximum when 97% of
the predicted scores fall in one of the Gaussians, and the remaining 3% in the second one.

In the context of optimization algorithms, neural networks seek to minimize the error;
thus, this gap, in our previous objective function (4.16), creates an extremely unstable
classifier. Since our model finds its minimum loss value in the NLLs ratio of the positive
bags when the NLL’s mixture is maximized, and considering that the Gaussians in nega-
tive bags should be identical, there is even more instability, pushing the predicted scores
into one of the extreme values of the unit interval, without learning a good classifier.

Several GOF tests [S+78, Pea00, Aka74] of statistical models, rely its confidence on the
quantity of the observations in the distribution; therefore, we also tried to side-step this
issue with the extraction of 240 temporal segments instead of 32 in each video. However,
the same unbalanced percentage values were observed.

We also tried to work around this issue by incorporating a constraint to the basis loss,
to penalize themodel exponentially whenever the difference betweenmixing probabilities
πk are greater than 40%, meaning that one of the Gaussians has a πk > 70%, consequently,
the other will attain values lower than 30%.

By making use of a softplus activation function [DBB+01], also called as SmoothReLU,
which has a similar behavior as the ReLU activation function [NH10b], but it is differen-
tiable at the zero value, combining this constraint, our objective function becomes:

l
(
N (Bu),G(Bu)

)
= max

(
0, 1−

nll
(
N (Bn)

)
nll

(
G(Bn)

) +
nll

(
N (Ba)

)
nll

(
G(Ba)

) )
+ ln

(
1 + eλ1(d−0.4)

)
,

(4.17)

where λ1 denotes an exponent constant to control the growth of the exponential, and d

denotes the mixing probability difference between the kernels in the Gaussian mixture,
such as: d =

∣∣∣πu
k − πu

j

∣∣∣ ,∀j, k ∈ {1, . . . ,K} ∧ j ̸= k, and the negative exponent constant
0.4 is a shifting transformation to the right for the exponential growth starting around 0.4

instead of zero, alike the original softplus function.

Despite the exponential penalization constraint, the FCN still provides a bad classifier,
predicting only extreme values, which means the network still finds its minimum value
of error by maximizing the NLL value. For this reason, the misconception in the NLLs
ratio requires a new approach to bypass this issue, and further research into the NLL
measurement and GOF tests will be done. Besides the unsuccessful NLL-based loss, we
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still provide results of our GMM-based approach using our MIL ranking loss that solidly
outperforms the state-of-the-art methods.
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Chapter 5

UBI-Fights Dataset

In this chapter, we present an overview of the existing public video abnormal event
datasets on surveillance footage for anomaly detection purposes. We present the main
characteristics and explore some advantages and limitations of the currently available
datasets in addition to some image examples to illustrate each database. Due to those
limitations, we present the availability 1 of a new large-scale database fully annotated at
the frame-level, the UBI-Fights dataset constructed with the purpose of providing dis-
tinguishable solutions, in comparison with the existing ones, for further research in the
anomaly detection field. Furthermore, we detail the collection process and a comparison
between the previous datasets and ours.

5.1 Related Datasets

The research and developments in abnormal events detection require much video image
analysis due to the extreme diversity of innumerous anomaly events. Therefore it is cru-
cial to operate on the largest possible number of videos in a dataset, robust enough with
respect to the learning domain employed. Regarding the detection algorithms of those
events, different dataset scopes can be identified, such as databases staged in invariant
locations, which means every video sequence is staged and captured only in one location
always with the same camera angle, considering an abnormal event everymotion that dis-
tinguishes from the usual flow of the entities present in the scenes, usually preferable in
the unsupervised domain. On the other hand, for a more challenging approach, there are
also databases staged in multivariate scenarios, meaning that in the same dataset, there
aremultiple different sceneswithmultiple camera angles, where a humanmanually states
the abnormality event, and for this reason, it is more difficult to assemble and annotate
such dataset. Currently, there are several publicly available video databases, presenting
divergent solutions and detection protocols that could be used for both supervised and
unsupervised learning domain algorithms.

In the following subsections, we describe the characteristics of the current most rele-
vant anomaly event databases, commonly used as baselines for a fair result comparison
between state-of-the-art detection methods in this field. With our attention turned to the
scene’s environment diversity, that each database contains for satisfying different pur-
poses in the learning domains, along with its available ground-truth in each database,
facilitating its use for further research. Additionally, we also pay attention to the natural-

1http://socia-lab.di.ubi.pt/EventDetection
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ity of the captured scenes, i.e., if the entities present in the scenes are in normal situations
scenarios, or if they are representing on purpose, meaning that it was synthetically made.

Since our current proposals are based on weak and self-supervised learning, we consid-
ered the analysis of these factors as the most relevant parameters, concerning the domain
of supervised learning, for our new publicly available dataset.

5.1.1 UMN Dataset

The University of Minnesota (UMN) anomaly detection dataset [UMN] consists of a syn-
thetic dataset to simulate crowded escape events, reproducing panic movement in pop-
ulated areas. A normal crowd behavior, people walking around the scene, is observed
at each video sequence beginning until at some point the behavior rapidly evolves into a
panic crowded movement where all persons in the scene disperse from a central point.
The UMN dataset contains 11 anomaly video sequences of three different scenes. The
database includes colored and grayscale scenes, as well as indoor and outdoor scenarios
(as shown in figure 5.1) however, the collected outdoor videos were only taken during the
daytime. In spite of the small number of video sequences, any annotation is provided.

Figure 5.1: Illustration images of the scenes from the UMN dataset.

5.1.2 USCD Peds1 and Peds2 Datasets

The University of California San Diego has developed two anomaly detection subsets ac-
quired from two stationaries cameras, in elevation, pointed out to pedestrians walkways
in natural circumstances, UCSD-Peds1 and Peds2 [LMV13]. The main characteristics of
both datasets are the circulations of non-pedestrians entities, some of which are small
carts, skaters, and bikers, which causes an abnormal event among the pedestrians. Addi-
tionally, it is also considered as an anomaly, the abnormal pedestrian’s motion patterns,
such as people not walking in the same flow path as others, for instance, crossing ways or
walking in the grass.

The two subsets correspond to two different scenes, and both datasets’ video sequences
were trimmed to approximately 200 frames. Both subsets include normal and abnormal
situations; the subset Peds1 contains 70 video sequences, while the Peds2 only contains
28 videos. In each subset, the frame-level annotations of the whole dataset are provided;
additionally, the test sets are also annotated at the pixel-level with binarymasks to identify
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the abnormal local regions. However, this dataset (as shown in figure 5.2) is only available
in grayscale, and the video sequences were collected only during the daytime.

Figure 5.2: Illustration images of the scenes from the UCSD Pedestrians dataset.

5.1.3 CUHK-Avenue Dataset

The Chinese University of Hong Kong (CUHK) built a new univariate database for ab-
normal events detection in an outdoor environment, the CUHK-Avenue dataset [LSJ13],
where the video sequences of normal situations scenarios, were captured from a static
camera pointed to one avenue of the campus. The normal patterns of this dataset are
pedestrians movement parallel to the camera plane, considering as outliers, every per-
son that deviates from the normal path or motion (running), and if some abnormal object
is present in the scene, such as bicycles, as shown in figure 5.3. The database includes
normal and abnormal situations during the daytime, with 37 colored video sequences an-
notated at the frame-level and provides the bounding boxes of each object or person with
an abnormal motion in the scene.

Figure 5.3: Illustration images of the scenes from the CUHK-Avenue dataset.

5.1.4 Street Scene Dataset

The North Carolina State University, in cooperation with Mitsubishi Electric Research
Labs, developed a new univariate video dataset for anomaly detection, denominated as
the Street Scene dataset [RJ20], containing video sequences of a two-lane street with bike
lanes and pedestrian sidewalks in daily real-life scenarios. This database is composed of
81 videos of normal and abnormal events, captured from a fixed camera pointed down to
the street, which is a challenging dataset presenting a variety of activities, such as daily
traffic, biking, and pedestrians’ flow. Despite the surveillance footage taken only during
the daytime, it includes video sequences during different times of the day, presenting dif-
ferent lights and shadows. Ground-truth annotations are provided with this database,
including bounding boxes, and pose tracking associated with each box.
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Figure 5.4: Illustration images of the scenes from the Street Scene dataset.

5.1.5 ShanghaiTech Campus Dataset

The ShanghaiTech University presented a new, more challenging, and complex dataset
in the anomaly detection field, designated as ShanghaiTech Campus Dataset [LLLG18],
consisting of 130 video sequences across 13 different locations in their campus. Presenting
a variety of real-life pedestrians’ activity, different angles capturing different scenes, and
with an outdoor environment in this database, it is considered as an abnormal event every
entity that distinguishes from normal pedestrian’s behavior, such as running, biking, or
presenting abnormal objects into the scene like strollers and skaters. The ShanghaiTech
Campus dataset is captured from a fixed camera in every different scene, providing col-
ored images. The pixel-level ground-truth of the abnormal events is provided in the an-
notations of this dataset.

Figure 5.5: Illustration images of the scenes from the ShanghaiTech Campus dataset.

5.1.6 UCF-Crime Dataset

The University of Central California has developed the most challenging large-scale
dataset in the abnormal event detection scope until now, theUCF-Crime dataset [SCS18].
Consisting of 1900 untrimmed video sequences completely wild, which means the videos
in the database are not related in any way to any video within this dataset, and they are
all captured from different scenes, the dataset length is comprised of 128 hours of video.
It includes 13 different realistic anomalies, such as abuse, arrest, arson, assault, accident,
burglary, explosion, fighting, robbery, shooting, stealing, shoplifting, and vandalism, in
addition to normal situations scenarios. All selected to have a significant impact on pub-
lic safety. This dataset has an enormous variety concerning the environment of different
scenes, including captured indoor and outdoor scenarios, daytime and nighttime lighting
effects, colored and grayscale images, fixed and rotated cameras, and divergent ethnicity
among the humans, including only realistic scenarios. Such a dataset is not easy to anno-
tate, and they only provide the frame-level ground-truth annotations of their testing set,
while the remaining videos are annotated at the video-level.
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(a) Explosion scenario. (b) Road accident scenario. (c) Vandalism scenario.

Figure 5.6: Illustration images of the scenes from the UCF-Crime dataset.

5.2 New Dataset

Considering the studied above described abnormal event databases, we came to the con-
clusion of the necessity of a large-scale dataset that satisfies all the gaps in the relevant pa-
rameters analyzed in the existing databases. Apart from the UCF-Crime dataset [SCS18],
which presents a very rich and robust large-scale dataset, it does not provide a fully an-
notation at the frame-level in the training set, and despite the advantages of having 13

anomaly scenarios in both training and testing sets, there is a lack of unbalanced videos
between individual anomaly scenarios and normal video sequences in their testing set.
The remaining public datasets are considered not very divergent, and are more suitable
to attain low levels of performance to the required for an effective deployment of this kind
of technology in fully unconstrained scenarios that distinguishes from the learning videos
within the dataset.

Based on these factors, we decided to create a new publicly available 2 large-scale
anomaly detection dataset, the UBI-Fights [DP20], with the essential characteristics that
distinguish from the existing public ones. It consists of a specific anomaly detection first
of its kind dataset of only fighting scenarios and normal daily life situations.

The UBI-Fights dataset is composed of 80 hours of video fully annotated at the frame-
level, consisting of 1000wild video sequences, where 216 videos contain a real-life fighting
event, and 784 videos contain only normal daily life scenarios. The videos were collected
from YouTube and LiveLeak using a variety of text search queries for fight events, and in
order to assemble as many videos as possible, we also used text searches in different lan-
guages (e.g., Portuguese, Spanish, English, French, Italian, Russian, German, Chinese) to
obtain fighting events. Additionally, for consistency purposes, we removed all unneces-
sary video segments that could disturb the learning process of the methods executed on
this database, giving us the advantage of taking profit of fight events taken from news,
within compilation videos, or manually edited ones. We also included rotated cameras,
as well as the most stable movable camera videos, which are slightly shaky, were also col-
lected to reach the most divergence motions regarding this abnormal event. This dataset
provides the frame-level ground-truth annotations of all video sequences in the database,
as well as the environment and appearance flags, are contained in each video title, such

2http://socia-lab.di.ubi.pt/EventDetection
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as environment (indoor or outdoor), camera type (fixed, rotated or movable), and color
type (RGB or grayscale).

5.2.1 Collection and Preprocessing

As stated above, all fighting videos and some normal videos were collected from YouTube
andLiveLeak, the remaining normal videoswere collected fromprevious public databases
[FBLF07, PMRC17, FSVC05] due to its very difficult search and acquisition.

Due to the variety of video types over the internet, preprocessing was required, resiz-
ing all videos to the dimension of 640 × 360 pixels. Every video with a different ratio
was adjusted with white-colored margins with the required size to avoid distortions, and
the frame-rate was normalized to 30 frames-per-second (fps). Figure 5.7 illustrates some
images from the video sequences of the UBI-Fights dataset, and figure 5.8 presents the
statistics of the durations regarding every video in the database.

(a) Indoor scenario. (b) Outdoor scenario. (c) Grayscale video sequence.

(d) Nighttime scenario. (e)Movable camera. (f) Normal daily situation.

Figure 5.7: Illustration images of the scenes from the UBI-Fights dataset.

5.2.2 Annotation Process

For uniformity purposes, the same abnormal boundary criteria was used through the an-
notations of every video sequences, considering the beginning of the fighting event, the
moment when the aggressor(s) touch the victim(s), and the end of the event, the moment
the aggressor(s) walk away from the victim(s).

The annotation of such a dataset requires much effort and time-consuming. To facili-
tate the whole process, we developed a new annotation application not only to annotate
the abnormal events’ ground-truth frames but also to trim video sequences to remove un-
desired frames or even to create subsequences from compilations, to take advantage of
every video found in the collection process. Figure 5.9 illustrates the application used in
the annotation process of the UBI-Fights dataset.
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Figure 5.9: New developed annotation aplication used for the UBI-Fights dataset.
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Chapter 6

Experiments and Discussion

In this chapter, we present the results of our experiments regarding both proposed ap-
proaches in this work. The experiments were engaged in two different ways: 1) in order to
employ and compare the self-supervised learning experiments and taking into account the
one premise that a set of unsupervised data is available, we disregarded the ground-truth
labels of a subset in the learning sets, considering those subsets as unlabelled, and for a
fair result comparison between the state-of-the-art and our WS/SS framework approach
[DP20], all methods used rigorously the samemanually annotated labels for learning pur-
poses, therefore, in practice, each method starts training with the same learning set; 2)
experiments on the Gaussian Mixture Model-based (GMM) approach were normally per-
formed with all the available labels on the training set in each dataset, also using a fair
result comparison using the same learning sets in the other methods. Hence, to guaran-
tee a fair evaluation between the state-of-the-art approaches in abnormal detection and
our proposals, all methods, in both ways of the experiments, used exactly identical testing
sets within the respective experiment.

Finally, as our final experiment to examine the performance of our models in the real-
world, we present the qualitative results consisting of executing our best model through
some real-case fighting scenarios.

6.1 Datasets, Baselines, andEmpirical Evaluation Protocol

With our two proposedmethods, the experiments were conducted in three datasets (UBI-
Fights, UCF-Crime [SCS18], and UCSD-Peds1 [LMV13]). The UBI-Fights dataset was
split into three disjoint subsets: 80% for the learning set, 5% for the validation set, and 15%
for the testing phase. For the UCF-Crime [SCS18] dataset, we used the default learning
data split, and for validation purposes, we use 50% of the testing set, randomly chosen.
While for the UCSD-Peds1 [LMV13], which the learning set only contains normal videos
and the testing set only contains abnormal videos, we randomly move abnormal videos
to the learning set, not belonging to the testing set anymore, and randomly move normal
videos to the testing set, not including them in the learning set. Moreover, we use 50% of
the final testing set only for validation purposes.

Essentially, in the WS/SS framework, the validation set is used by both Bayesian clas-
sifiers in order to obtain the distributions of both positive and negative instances, as well
as the pattern classifier’s learning operates over the SS expert’s response scores in each
system’s iteration with the instance’s ground-truth.
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In order to employ theWS/SS framework, we trimmed the videos of theUBI-Fights and
the UCF-Crime [SCS18] datasets into sub-videos with a fixed length (16 seconds), hav-
ing manually adjusted the corresponding annotations. Since theUCSD-Peds1 [LMV13] is
already with a fixed length of 200 frames, no changes were made in those videos. In or-
der to test the GMM-based approach, we use the original videos of each dataset, with no
changes needed. Next, for every 16-frame clip (i.e., one segment) for the three datasets,
the sixth fully-connected layer (FC6) of the C3D network [TBF+15] was employed to ex-
tract the spatiotemporal descriptors. Then, for the bag formation in our methods and for
the Sultani et al.’s proposal [SCS18], we obtain the bag’s features by taking the average of
all 16-frame video clip features within that segment, using these features as input to the
abovementioned methods.

We also converted the UCSD-Peds1 [LMV13] to a frame rate of 30 fps since the C3D
model was trained in videos with approximately 30 fps, for this reason, a lower frame rate
will result in a higher motion captured, which will result in tremendous errors employing
the SS expert, since it operates at the 16-frame clip level. On the other hand, the WS
and GMM experts work at the bag level, where the temporal segments are extracted by
the mean of each 16-frame clip, the errors are not so evident, but for precautions, the
conversion to 30 fps was made in all experiments.

As baselines, fivemethods, regarding both one-class andbinary classification, were con-
sidered to represent the state-of-the-art: 1) Sultani et al. [SCS18], analyzing both normal
and abnormal videos, the model is trained with weakly-labeled videos producing high
scores for anomaly events; 2) the work due to Ravanbakhsh et al. [RNS+17] training two
networks with only normal events, one to generate optical-flow from frames and other to
generate frames from optical-flow, detecting abnormal pixels for frame-level detection;
3) Chong and Tay [CT17] training a temporal AE with a spatial feature extractor, by using
only normal videos, and detecting the anomaly by its reconstruction error; 4) Hasan et
al. [HCN+16] by using improved trajectories features of only normal videos to train the
AE, also using the reconstruction error to predict the anomaly; 5) Wang et al. [WQL+18],
also under the one-class criterion, extracting foregrounds and optical-flow with a FCN,
and filtering spatiotemporal features with a VAE, detecting the anomaly with the recon-
struction error of a second VAE combined with a convolutional neural network. Each
baseline is described and detailed in chapter 2. Apart these, we also tested the perfor-
mance attained by a quadratic kernel SVM working under the single-class paradigm, fed
by the same C3D feature vectors as our GMM, WS and Sultani et al. models.

The detection protocol used in each baseline was frame-level detection, and three per-
formance measures are reported: the decidability index (d′), the AUC value, and the
Equal Error Rate (EER), also providing the corresponding Receiver Operating Charac-
teristic (ROC) curves.
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6.2 Implementation Details

For both the WS and GMM-based experts, we split each video into 32 non-overlapping
temporal segments, and the average is taken to all 16-frame features within those seg-
ments, using them as input to the FCN in both these approaches. While to our SS expert,
the input instances used are directly the 16-frame video clip features, providing better in-
formation. Both networks in the WS/SS framework and the GMMmethod have the same
network architecture, which is composed of a FCN with 512 units with ReLU as activation
functions [NH10b], followed by 32 units in the second layer with linear activation, and
one unit in the output layer with sigmoid as the activation function. Between FCN, the
dropout regularization [SHK+14] used is 60% and applied AdaGrad [DHS11] with a initial
learning rate of 0.01. In the three approaches, for a better comparison between them, the
only difference lies in the applied ranking loss function, all described in chapters 3 and 4.
The pattern classifier, as illustrated in figure 3.1, its architecture is composed of a 4-layer
FCN with 256, 196, and 128 units for the first three layers with ReLU activations [NH10b]
in each one, followed by 1 unit as the output layer applying sigmoid activation.

In [CT17], we use the temporal encoder-decoder with a 10-frame depth to encode its
motion, with 128 : 64 : 32 : 64 : 128 architecture. In Wang et al. [WQL+18], we train the
first VAE, which is fed with a two-frame depth motion features extracted by a pre-trained
fully convolutional neural network, the second VAE takes as input the filtered features,
with the following architecture 256 : 128 : 6 : 128 : 256. By using the fully convolutional
network to feed a deep AE proposed by Hasan et al. [HCN+16], we fix a temporal window
of 16 frames (near the recommended by the author), and the following AE architecture
512 : 256 : 128 : 64 : 128 : 256 : 512. In [RNS+17] using cGANs, we use the proposed
architecture by Isola et al. [IZZE17], training the networks until both generators’ losses
stop decreasing. Using the work by Sultani et al. [SCS18], we extract video features of
every 16 consecutive frames (with C3D [TBF+15]) and convert them to 32 non-overlapped
temporal segments, training the minimum number of epochs (considering the suggested
by the author) and until the AUC value of the validation set is nearly constant.

6.3 Self-Supervised Learning Results Comparison

As stated above, we performed theWS/SS framework approach through the three datasets
using a subset of our learning set as our unsupervised set for self-supervising purposes,
using the same manually labeled learning set for every method. Regarding our WS/SS
framework proposal, figure 6.4 provides the evolution in performance using only 30% of
the ground-truth in the learning set. For each dataset, it can be observed that the AUC val-
ues of both experts in each iteration increase each other, attaining a clear margin from the
Sultani’s performance (continuous black lines), in exception of the UCF-Crime [SCS18],
as it is considered a substantial harder task in finding simultaneously consistent patterns
among 13 different types of anomalies, which justifies the performance of the WS expert.
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We came to the conclusion that our GMM-based approach incorporated into theWS/SS
framework results in slightly better performance, considering that theGMMproposal out-
performs the Sultani et al. [SCS18] method in section 6.4. More importantly, since the
Gaussian Mixture approach operates at the distribution level, instead of the maximum
value in a bag, by difficulting the learning process with our novel term, the GMM achieves
an even better distribution for the Bayesian framework, reducing the peaked distribution
in both extremes of the unit interval. The reason to attain peaked distributions, in the
lower extreme of the unit interval, in the standard WS/SS framework described in chap-
ter 3, lies on its ranking loss function, which tries to separate the positive scores far apart
from the lower values. So, by difficulting this process, the positive scores will be spread
over the unit interval; however, the hardest positive scores will stay in the lower values.
On the other hand, the GMM-based ranking loss, by working in the distribution level, and
trying to separate the mean values, by difficulting this process, only the obvious normal
instances will achieve lower values, and only the most reliable positive instances will at-
tain higher values. However, in the UBI-Fights, the performance improvements are not
so obvious due to the fact that the GMM and Sultani’s approach are also quite similar in
section 6.4. The final results are summarized in table 6.3 and its ROC curves in figure 6.1.

Additionally, as a proof-of-concept reinforcement of our coupled deep-learning net-
works system, we performed all the consideredmethods through each individual anomaly
scenes in theUCF-Crime dataset [SCS18], i.e., we separated each anomaly scene from the
remaining ones, so that each method can be trained with normal scenes and the corre-
sponding scene individually, each approach was also evaluated with the normal and re-
spective scene of the testing set provided by theUCF-Crimedataset [SCS18]. Eachmethod
rigorously starts its training with exactly the same 30% of the learning set in each scene.
Table 6.1 provides the performance summary of every individual anomaly scene experi-
ment. The first two scenes presented an extremely unbalance between normal and abnor-
mal videos.

Individual UCF-Crime Scenes

Method Abuse Arrest Arson Assault Burglary Explosion Fighting Road
Accident

Robbery Shooting Shop-
lifting

Stealing Vanda-
lism

[HCN+16] 0.599 0.748 0.718 0.894 0.646 0.596 0.526 0.543 0.552 0.560 0.589 0.685 0.642

[RNS+17] 0.558 0.617 0.764 0.633 0.576 0.545 0.536 0.549 0.609 0.677 0.633 0.533 0.522

[WQL+18] 0.621 0.755 0.504 0.664 0.514 0.673 0.559 0.620 0.688 0.524 0.511 0.674 0.501

[CT17] 0.644 0.709 0.807 0.699 0.546 0.571 0.519 0.545 0.516 0.526 0.792 0.581 0.542

SVM 0.702 0.865 0.706 0.703 0.644 0.513 0.519 0.684 0.512 0.719 0.512 0.656 0.604

[SCS18] 0.589 0.581 0.921 0.688 0.843 0.819 0.805 0.944 0.638 0.642 0.665 0.881 0.842

SS Model 0.545 0.711 0.955 0.902 0.915 0.878 0.864 0.962 0.695 0.746 0.873 0.937 0.896

Table 6.1: Performance summary, concerning the individual training in each scene of the UCF-Crime
dataset [SCS18], of the proposed weak/self-supervised method with respect to the state-of-the-art. The

result values correspond to the AUC.

42



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Hasan et al.
Ravanbakhsh et al.
Wang et al.
Chong and Tay
Binary SVM
Sultani et al.
SS Model
SS Model + GMM

(a) UBI-Fights.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Hasan et al.
Ravanbakhsh et al.
Wang et al.
Chong and Tay
Binary SVM
Sultani et al.
SS Model
SS Model + GMM

(b) UCF-Crime [SCS18].

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

Hasan et al.
Ravanbakhsh et al.
Wang et al.
Chong and Tay
Binary SVM
Sultani et al.
SS Model
SS Model + GMM

(c) UCSD-Peds1 [LMV13].

Figure 6.1: Comparison between the ROC curves obtained by the eight methods considered in comparison
with the WS/SS framework, for the UBI-Fights, UCF-Crime [SCS18] and UCSD-Peds1 [LMV13] datasets.

6.4 Weakly-Supervised Learning Results Comparison

As the secondpart of our experiments, andwith the proposedGMM-based approach in the
weakly-supervision paradigm, we also present the performance through the three datasets
employedwith each training set only weakly-labeled. Using the configuration splits stated
above for the GMMexperiments. Figure 6.2 illustrates the ROC curves from the summary
of the performance presented in table 6.2.

The immediate observation was the extremely poor performance that single-class tech-
niques attain in this type of problem, in accordance with an observation drawn by Sul-
tani et al. [SCS18]. These techniques fail in a disastrous way to appropriately establish a
boundary between normality and abnormality in test data. From our observations in the
UBI-Fights, andUCF-Crime dataset [SCS18], this might occur due to the extreme hetero-
geneity of the expected inputs. On the other hand, in the UCSD-Peds1 dataset [LMV13],
despite its homogeneity of the inputs, the poor performance levels are due to the required
additional (enormous) amounts of learning data to become minimally effective, since in
this training set we reduce the normal instances, including the remaining ones in the test
set, to split the abnormal instances in both training and test set for a fair comparison
with the GMM and Sultani’s approach. Concerning the Sultani et al. [SCS18]’s proposal,
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their method performed well in all datasets, but there is still a very large amount of false
positives, as shown in figure 6.3. Regarding our proposal, we were able to outperform
the state-of-the-art in the weakly-supervised learning paradigm, reaching not only better
AUC values, but also much better decidability index and EER essentially due to our better
distribution scores in the test set, shown in figure 6.3.
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Figure 6.2: Comparison between the ROC curves obtained by the seven methods considered in comparison
with our GMM-based proposal, for theUBI-Fights,UCF-Crime [SCS18] andUCSD-Peds1 [LMV13] datasets.

6.5 Qualitative Results

For our third and final experiment, and as a proof-of-concept system with collaboration
from the technological company TOMI WORLD, we have collected our own simulated
real-case scenarios captured from TOMI devices located in Lisbon, Portugal. In order to
perform the experiments in divergent conditions, we conducted the simulations in two
TOMI devices, one in an indoor environment (located inside a subway station in Lisbon)
and the second one in an outdoor environment (located in Lisbon’s streets). Figure 6.5
illustrates the TOMI devices where the scenes were captured.

The simulations were captured with the normal crowd’s flow around the environment
in each TOMI device for natural behavior consistency. Nine persons were involved in
the simulation of the fighting scenes, where we personally supervised the acting scenes to
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provide different scenes, different clothes in the same actor, different numbers of charac-
ters involved in the scene, different distances from the TOMI device, and every detail was
planned to provide as much divergence as possible between the captured scenes.

As a concluding remark, even though our proposed method provided - overall - satisfy-
ing results in each scene, there is still a gap between the performance attained in indoor
and outdoor scenarios, where the reported scores typically are much more irregular than
in the indoor settings. We also observed that by simulating different types of fights (stand-
ing and in the ground), our model identifies better the abnormal motions in standing
fights in comparison to fights taken to the ground where the movement is not so radical.
Consequently, in far distance fights, the motion is also more difficult to obtain. Concern-
ing the number of persons present in the fight, obviously, when more people are involved
in the event, the abnormal motions increase, being easier to identify.
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Method AUC d’ EER

UBI-Fights

Hasan et al. [HCN+16] 0.510 ±0.006 0.265 ±0.013 0.516 ±0.004

Ravanbakhsh et al. [RNS+17] 0.523 ±0.003 0.011 ±0.006 0.504 ±0.003

Wang et al. [WQL+18] 0.610 ±0.005 0.323±0.011 0.427 ±0.003

Chong and Tay [CT17] 0.557 ±0.006 0.540 ±0.18 0.469 ±0.006

Binary SVM Classifier 0.602 ±0.007 0.357 ±0.023 0.429 ±0.006

Sultani et al. [SCS18] 0.892 ±0.001 0.804 ±0.009 0.186 ±0.001

GMMMethod 0.906 ±0.001 1.386 ±0.011 0.160 ±0.001

UCF-Crime

Hasan et al. [HCN+16] 0.552 ±0.002 0.041 ±0.015 0.448 ±0.003

Ravanbakhsh et al. [RNS+17] 0.548 ±0.003 0.063 ±0.021 0.451 ±0.004

Wang et al. [WQL+18] 0.587 ±0.004 0.064 ±0.008 0.437 ±0.003

Chong and Tay [CT17] 0.627 ±0.005 0.449 ±0.016 0.406 ±0.007

Binary SVM Classifier 0.504 ±0.004 0.067 ±0.014 0.508 ±0.005

Sultani et al. [SCS18] 0.743 ±0.001 0.613 ±0.006 0.353 ±0.002

GMMMethod 0.759 ±0.001 0.885 ±0.005 0.302 ±0.002

UCSD-Peds1

Hasan et al. [HCN+16] 0.586 ± 0.011 0.289 ± 0.037 0.427 ± 0.011

Ravanbakhsh et al. [RNS+17] 0.583 ±0.016 0.159 ±0.006 0.445 ±0.013

Wang et al. [WQL+18] 0.543 ±0.013 0.101 ±0.048 0.473 ±0.012

Chong and Tay [CT17] 0.653 ±0.008 0.240 ±0.032 0.347 ±0.006

Binary SVM Classifier 0.588 ±0.009 0.307 ±0.028 0.439 ±0.009

Sultani et al. [SCS18] 0.759 ±0.009 0.794 ±0.042 0.297 ±0.011

GMMMethod 0.801 ±0.005 1.001 ±0.019 0.236 ±0.009

Table 6.2: Performance summary of the GMMmethod with respect to the state-of-the-art.
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Figure 6.3: Distribution scores comparison between Sultani [SCS18]’s and our GMM-based approaches in
the three datasets.
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Method AUC d’ EER

UBI-Fights

Hasan et al. [HCN+16] 0.528 ±0.003 0.194 ±0.007 0.466 ±0.002

Ravanbakhsh et al. [RNS+17] 0.533 ±0.003 0.147 ±0.001 0.484 ±0.002

Wang et al. [WQL+18] 0.540 ±0.002 0.164±0.008 0.475 ±0.002

Chong and Tay [CT17] 0.541±0.003 0.059 ±0.001 0.480 ±0.001

Binary SVM Classifier 0.556 ±0.003 0.128 ±0.012 0.443 ±0.003

Sultani et al. [SCS18] 0.787 ±0.002 0.738 ±0.011 0.294 ±0.002

SS Model 0.819 ±0.001 0.986 ±0.008 0.284 ±0.001

SS Model w/ GMMModel 0.820 ±0.001 1.291 ±0.014 0.262 ±0.001

UCF-Crime

Hasan et al. [HCN+16] 0.573 ±0.001 0.167 ±0.006 0.424 ±0.001

Ravanbakhsh et al. [RNS+17] 0.642 ±0.001 0.423 ±0.005 0.376 ±0.001

Wang et al. [WQL+18] 0.539 ±0.001 0.104 ±0.004 0.472 ±0.001

Chong and Tay [CT17] 0.532 ±0.002 0.138 ±0.006 0.484 ±0.001

Binary SVM Classifier 0.604 ±0.001 0.377 ±0.003 0.441 ±0.001

Sultani et al. [SCS18] 0.668 ±0.001 0.523 ±0.004 0.375 ±0.001

SS Model 0.744 ±0.001 0.764 ±0.005 0.305 ±0.001

SS Model w/ GMMModel 0.758 ±0.003 0.941 ±0.009 0.304 ±0.004

UCSD-Peds1

Hasan et al. [HCN+16] 0.586 ± 0.011 0.289 ± 0.037 0.427 ± 0.011

Ravanbakhsh et al. [RNS+17] 0.583 ±0.016 0.159 ±0.006 0.445 ±0.013

Wang et al. [WQL+18] 0.543 ±0.013 0.101 ±0.048 0.473 ±0.012

Chong and Tay [CT17] 0.653 ±0.008 0.240 ±0.032 0.347 ±0.006

Binary SVM Classifier 0.588 ±0.009 0.307 ±0.028 0.439 ±0.009

Sultani et al. [SCS18] 0.759 ±0.009 0.794 ±0.042 0.297 ±0.011

SS Model 0.807 ±0.005 1.119 ±0.015 0.255 ±0.008

SS Model w/ GMMModel 0.817 ±0.006 1.218 ±0.051 0.252 ±0.006

Table 6.3: Performance summary of the proposed method with respect to the state-of-the-art. The final row
in each dataset provides the performance of the GMM approach incorporated in the WS/SS framework.
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Figure 6.4: Performance evolution with respect to the WS/SS framework iteration, observed for the
UBI-Fights, UCF-Crime [SCS18], and UCSD-Peds1 [LMV13] sets.

(a) TOMI indoor. (b) TOMI outdoor.

Figure 6.5: Requested TOMI devices for the experiments in capturing the scenes illustrated in figure 6.6.
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(a) Fight: standing; Persons: 2;
Distance: middle; Environment: indoor.

(b) Fight: ground; Persons: 2;
Distance: middle; Environment: indoor.

(c) Fight: standing + ground; Persons: 2;
Distance: middle; Environment: indoor.

s

(d) Fight: against wall; Persons: 2;
Distance: up close; Environment: indoor.

(e) Fight: standing; Persons: 2;
Distance: up close; Environment: indoor.

(f) Fight: standing + ground; Persons: 2 + 4;
Distance: up close; Environment: indoor.

(g) Fight: run + standing; Persons: 2 + 2;
Distance: far; Environment: indoor.

(h) Fight: standing; Persons: 2;
Distance: up close; Environment: outdoor.

(i) Fight: standing + ground; Persons: 3;
Distance: middle; Environment: outdoor.

(j) Fight: standing + ground; Persons: 2 + 1;
Distance: far; Environment: outdoor.

Figure 6.6: Qualitative results of our model performed in real-world scenarios. The red window
corresponds to the ground-truth of the scene.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In the presentedwork, the primary purpose of our researchwas the explanation anddevel-
opment of computer vision solutions in response to the biometric challenge of detecting
abnormal events in surveillance footage under the weakly and partially supervised learn-
ing paradigm. In order to achieve this goal, it was essential to understand: 1) how to
extract the human dynamics features and its surroundings from video sequences; 2) how
the state-of-the-art methods currently handle those features to identify consistent pat-
terns in different types of learning to detect the abnormal events, and 3) which type of
learning employed in this field is more suitable considering the multiple obstacles in this
kind of problems.

After presenting the video image analysis obstacles in this type of challenge and all the
recent improvements in the computer vision domain, we conducted an extensive and de-
tailed reviewof the state-of-the-art studiedmethods, in anomaly detection, tomastermind
the concepts required to effectively develop this kind of technology in fully unconstrained
scenarios with the minimum supervision needed. As described along this dissertation,
we concluded that unsupervised learningmethods in abnormal event detection were even
more complex in learning a robust classifier capable of detecting anomalies in heteroge-
neous scenarios. Besides that, we have also identified its ineffectiveness in homogeneous
scenarios when the amount of learning data is scarce. On the other hand, despite the fact
that supervised learningmethods need some information about the learning data, we face
this problem by minimizing the manually labeling effort with the employment of weakly-
supervised and self-supervised learning approaches.

This work introduces a new proposal with the objective of taking advantage of self-
supervised algorithms supported by Bayesian classifiers. We show that this coupled
deep learning networks were successfully capable of labeling unsupervised datasets and
improve the performance of each other consistently over the framework’s iterations by
means of a Bayesian framework, in multiple experiments as a proof-of-concept. This new
method has the benefit of taking advantage of small weakly-supervised datasets and label-
ing at the strong-supervised level without any additional human supervision. This recent
self-supervision technique is still not being extensively used in computer vision, and we
expect that this work will encourage further research in this domain, due to the continu-
ously substantial problem in ML algorithms of having sufficient amounts of labeled data
to learn a robust model effectively. By also taking this into account, we propose a second
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approach within the weakly-supervised learning paradigm where the learning data is la-
beled at the video-level. With the application of theGaussianMixturemodels (GMM), and
assuming the distinctiveness between the expected distribution scores in normal videos
and anomaly videos, we were capable of learning a robust model based on the fitting of
our GMM in those videos. This model was able to solidly outperform the current meth-
ods and prove to achieve better distribution scores compared to the state-of-the-art in
weak supervision learning. This new proposal also has the advantage of requiring mini-
mum supervision to learn an effective classifier to detect abnormal events. Moreover, we
also prove the possible incorporation of other approaches into the WS/SS framework to
achieve even better results on its own, which must be considered as an achievement.

Besides those proposed methods, and with the goal of supporting further research in
this field, we constructed a new unique large-scale anomaly detection database, fulfilling
the requirements that existent abnormal event datasets did not satisfied. Concerning a
specific anomaly detection and still providing a wide diversity in fighting scenarios, fully
annotated at the frame level, the UBI-Fights [DP20] database is publicly available 1 and
free to use by the research community.

In conclusion, the development of self-supervised learning algorithms in computer vi-
sion challenges is still in its commencement, but it will surely start to receive evenmore at-
tention due to the recurrent problem of data-hungry deep learning algorithms. At themo-
ment, weakly andpartially supervised algorithms are getting its consideration for avoiding
the difficulties of the manual labeling of learning data, known as strong supervision, and
being robust enough to face problems in real-world scenarios, as we have shown. More-
over, we successfully proposed two different approaches that employ different levels of
supervised learning in the anomaly detection challenge. We also explained and showed
how the self-supervised learning technique can be applied in computer vision problems
and still capable of being integrated into other methods, as well as, how to apply Gaussian
Mixture models in the weakly-supervised learning for abnormal event detection. There-
fore, we consider the main purposes of our research work as accomplished.

7.2 FutureWork

Inside the scope of this work, further research will be done in the proposed GMM-based
loss approach, as we expect to bypass the misconception in our NLL ratio and build a
GOF-based model to self-supervise the abnormal scores in the network’s response distri-
bution. Furthermore, the application of the proposed self-supervised learning framework
to a multi-class classification paradigm would also be of great interest, considering our
Bayesian classifiers are designed upon a Gaussian KDE, this kind of technique can also be
scalable to multiple kernels representing the different classes.

1http://socia-lab.di.ubi.pt/EventDetection
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In addition and as future work, it would be interesting to extend our work by merging
unsupervisedmethods, like VAEs, with self-supervising learning, without the dependency
of the previous learning data to learn a probabilistic encoder-decoder. This could be ap-
plied in any kind of environment, as the unsupervised learning method would self-adapt
to its conditions. Based on the principle that most already deployed automated systems
only use the captured scenes for the final step of classification purposes, the rationale of
this future work is to take advantage of those captured images and not only classify those
scenes but also continuously learn a better model through the analysis of the most com-
mon behavior within the respective environment, as soon as we are able to bypass the
limited processing power needed for the deployment of this kind of technology.
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Glossary

Anomaly Detection The process of distinguishing dissimilar instances in a
data-driven fashion. Anomalies may have origin on errors
or unknown events, depending on which concept being
applied.

Biometrics The study of techniques dealing with people’s recognition
based on physiological characteristics, such as the face,
iris, fingerprint, and behavioral traits, such as motion or
speech. It combines Computer Vision with knowledge of
human physiology and behavior.

Computer Vision A scientific field of the study concerning how computers
can achieve high-level understanding from processing
digital images and videos.

Deep Learning A class of ML algorithms inspired by the structure of a
human brain, neural networks. Using complex
multi-layered neural networks, these architectures are
able to extract high-level and abstract features.

Goodness of Fit A set of hypothesis tests to measure how well a statistical
model fits/represents the data observations. Those
measures usually estimate the discrepancy between the
observed values and expected values under the respective
model.

Machine Learning A subset of the larger field of Artificial Intelligence that
focuses on learning from experience to automatically
improve computer algorithms.

Neural Networks A type of algorithms designed to recognize patterns
through the underlying relationships of features in the
training process, molded by trying to reproduce the
human brain behavior.

Self-supervised Learning Types of algorithms training without humans providing
labeled data, but the model itself. Considered as an
autonomous structure of supervised learning, it is applied
in multiple domains, such as AE, auxiliary losses, data
augmentations.
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Supervised Learning A type of ML algorithms to learn a predictive model using
training data with known outputs, referred to as labeled
data. Correlating features with the outcome, it is typically
applied in the context of regression or classification
problems.

Unsupervised Learning A type of ML algorithms to learn an underlying model,
where no output is given with the training data, referred to
as unlabeled data. Discovering hidden patterns in data, it is
typically applied in the context of clustering problems.
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