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Abstract

In this paper we propose a new method for the iden-
tification of noisy regions in normalized iris images.
Starting from a normalized and dimensionless iris image
in the polar coordinate system, our goal consists in the
classification of every pixel as “noise” or “not noise”.
This classification could be helpful in the posterior feature
extraction or feature comparison stages regarding the
construction of biometric iris signatures more robust to
noise. We propose the extraction of 8 well known features
for each pixel of the images followed by the classification
through a neural network.
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1. Introduction

The use of biometric systems has been increasingly en-
couraged by both government and private entities in order
to replace or improve traditional security systems. More-
over, the dynamic conditions of the environments where iris
recognition systems are functioning propitiate the capture
of very heterogeneous images, regarding focus, brightness,
contrast, reflections or iris obstructions (eyelids, eyelashes,
glasses, ...). These noise factors led to a substantial in-
crement of the false rejections rate, a problem commonly
identified by several authors (e.g. [18], [11] and [17]).

Our aim consists in the identification of noisy regions in
the iris images and posterior construction of a binary map
where the noisy pixels are marked as opposed to non-noisy
pixels. This map can be useful in the posterior stages of the
iris recognition, namely the feature extraction and compari-
son stages.

We have analyzed the public and freely available iris
databases ([13], [3], [6], [16], and [14]) and choused the

UBIRIS [14] due to the high heterogeneity of the images re-
garding focus, reflections, contrast and lighting conditions.

Observations led us to identify five different types of
noise (information other than iris) that can corrupt the iris
regions:

Eyelids The biological function and natural movement of
the eyelids can obstruct relevant portions of the iris,
specially on the upper and lower parts. Number 1 from
the figures 1a and 1b illustrates the obstruction of the
iris by eyelids respectively in the captured and in the
normalized and dimensionless image in the polar co-
ordinate system [2].

Eyelashes Eyelashes can obstruct portions of the iris in two
distinct forms as they appear isolated or grouped. If
one eyelash is isolated, it appears as a very thin and
darker line in the iris region. The existence of multiple
eyelashes in the iris regions generates a uniform darker
region. Number 2 in the figures la and 1b illustrates
examples of eyelashes obstructions.

Pupil When the segmentation of the pupil is not accurate,
some portions of the pupil will be considered as iris
parts. Those areas appear at the upper part of the nor-
malized iris image (number 5 from figure 1b).

Strong Reflections We consider areas with ”strong reflec-
tions” those that correspond to reflections of light
sources directly pointed at the iris. These areas have
intensity values close to the maximum (number 4 of
images la and 1b).

Weak Reflections This type of reflections correspond to
reflected information from the environment where the
user is located and is looking at. As illustrated by the
number 3 from the figures 1a and 1b, these reflections
have lower intensity values than the previous ones and
can correspond to a wide range of objects that the user
is surrounded by.

The remaining sections of this paper are organized as
follows: in section 2 we overview several methods for the



( b) Segmented and normalized iris image

Figure 1. Types of noise in an iris image

identification of noise in iris images. Section 3 describes
the proposed classification methodology and in section 4 we
discuss and compare the obtained results. Finally, section 5
lists the conclusions.

2. Related Work

In order to avoid the problems originated by noisy in-
formation, some authors (e.g. [2]) propose the utilization of
portions of the iris, those where noise factors are less prob-
able.

In [10] the authors propose an iris image enhancement
by means of local histogram equalization and the removal
of the high-frequency noise through Gaussian low-pass fil-
tering.

Motivated by the observed difference between the stan-
dard deviation of the intensity values within small windows
from noisy and noise-free regions, authors from [12] and [4]
propose the computation of the standard deviations within
small (3 x 3 and 5 x 5 pixels) windows. If the value is
superior to a threshold, the central pixel of the window is
considered noise.

Wildes [18] proposes the equalization of the histogram
of the whole image and the localization of the inferior and
superior eyelids by means of an edge detection algorithm
followed by the linear Hough transform.

In [9] a global measure of the quality of the captured
image is proposed, based on the analysis of its frequency
distribution. The authors claim that noise-free irises have
relatively uniform distribution, as opposed to poor focused
or eyelid or eyelashes obstructed images. The authors did
not identify eyelashes or eyelids, having however concluded
that a substantial part of the observed false rejections were

due to the eyelid and eyelash obstruction (57.7%) and inac-
curate iris segmentation (21.1%).

The authors of [8] propose the classification of the noisy
regions directly in the captured image. They identified the
separable (isolated) eyelashes through the energy of the
convolution of the image with a bank of Gabor filters. The
values lower than a threshold correspond to the noisy re-
gions. Multiple eyelashes were identified through the com-
putation of the standard deviation within small regions of
the image. Reflections were classified as “’strong” (identi-
fied with a simple threshold) and ”weak”. The latter corre-
spond to transitions between the strong reflections and the
noise-free areas and are identified through an iterative algo-
rithm that expands the strong reflections areas.

Motivated by the problem of the high false rejection
rates, the authors of [17] propose the use of an edge detec-
tor followed by the linear Hough transform to detect eyelids
and eyelashes. This approach was also proposed with minor
variants in [7].

Based on the analysis of the energy resultant from the
convolution between the image and a group of Mexican-Hat
Wavelets at three different scales, the authors of [1] propose
both local and global image quality measures. From our
viewpoint, the database used was not adequate for the ef-
fective test of the methodology, since it contains almost no
reflections.

The purpose of the authors of [5] was the identification
of four distinct types of noise: eyelashes, eyelids, reflec-
tions and pupil. The basic idea is that there’s always some
type of edge between the noisy and the noise-free areas.
Those edges were identified through an illumination invari-
ant measure (phase congruency).

The analysis of the above described methods allowed us
to divide them as:

e Global versus local methodologies. Global methods
seek for the classification of the whole image, as ”’poor
focused” or “obstructed iris”. Local methods try to
classify each pixel of the iris providing additional in-
formation about each region of the image.

e Analysis of the captured versus the normalized iris im-
age. Some authors propose the noise identification
(usually eyelids and eyelashes) before the normaliza-
tion of the segmented image. We think that the uti-
lization of the whole image, containing more infor-
mation than the iris regions will obviously decrease
the method’s accuracy and increase its computational
complexity.

For the comparison between our methodology and other
proposals, we selected the methods from [5] and [1] since
they provide local quality measures, they operate in the nor-
malized iris image and their authors claimed invariance to
illumination changes.



Table 1. Noise identification errors from
tested measures

Method Error Rate (%)

ASM 30.21 4+ 0.0652
Entropy 11.17 4 0.0447
Contrast 40.18 + 0.0696
Energy 30.10 + 0.0651
Inertia 30.78 £ 0.0655

Phase Congruency (5] methodology) | 14.61 =+ 0.0501

[1] methodology 20.83 + 0.0577

Our methodology 2.74 4 0.0232

3. Proposed Methodology

In this section we will describe the proposed methodol-
ogy for the identification of noisy regions. We start by the
extraction of 8§ well known features followed by the classi-
fication through a fully connected feed-forward neural net-
work with one hidden layer.

3.1. Feature Extraction

Centered at each pixel, we computed five commonly
used statistical measures in small image windows, as de-
scribed in [15]: Angular Second Moment (ASM), Entropy,
Contrast, Energy and Inertia. We made the classification
through simple thresholds and achieved the results pre-
sented in the upper 5 rows of table 1. The two bottom rows
correspond to the obtained error rates respectively by the
methodologies proposed by [5] and [1]. These results cor-
respond to a 99% confidence interval from the classification
of 100 segmented, normalized and manually classified iris
images from the UBIRIS database, each of them with fixed
dimensions of 512 x 64 (width x height) pixels. Experi-
ments led us to choose 7 x 7 windows for the computation
of the statistical measures.

In spite of the distinct error rates from each measure, we
observed that each of the them emphasizes different types
of noise. Based on this fact, we combined all these mea-
sures and the proposed by [5] in the following classification
process.

In order to achieve spatial relationship between im-
age regions, we considered the position of each pixel in
the normalized image as features. Thus, for each image
pixel, we computed a 8-dimensional feature vector: (row,
column, entropy, ASM, energy, contrast, inertia,
phase congruency).

3.2. Classification

In the classification stage we applied a fully connected
feed-forward neural network with 1 hidden layer. The in-
put and output layers have fixed number of neurons, respec-
tively 8 neurons for the input and 2 neurons for the output
layer. As discussed in section 4, we made several experi-
ments varying the number of neurons on the hidden layer
and the maximum allowable error in the learning process
to achieve the optimization of the neural network’s accu-
racy. Figure 2 contains the obtained classification map for
the identified noisy regions from figure 1b. The dark re-
gions correspond to noisy information and the white to iris
regions.

Figure 2. Identified noisy regions from fig-
ure 1b.

4. Experiments and discussion

In the same data set described in section 3.1, we ran-
domly selected 20000 noisy and 20000 noise-free pixels,
which represent just 0.12% of the whole data set. We
proceed to the feature extraction process described in sec-
tion 3.1 and used this data as the neural network learning
set. In order to optimize the results, we evaluated the ac-
curacy of the neural network varying each of the following
parameters:

Number of neurons in the hidden layer Prior studies
have demonstrated that this number has a strong
influence on the neural network ability to optimally
separate the data. Based on this, we varied the number
of neurons in the hidden layer and repeated the
learning process.

Maximum allowable error to stop the learning stage
This value defines the desirable average error of the
neural network when classifying the training data set.
It is important for overcoming the possibility of the
excessive specialization of the network on the training
data.

Figure 3 illustrates the obtained error rates in the test
data. The presented values correspond to the average er-
rors obtained after 10 repetitions of the learning process for
each configuration. The "X and ”Y” axis respectively cor-
respond to the number of neurons in the hidden layer and



Figure 3. Error rates of the neural network in
the test data

the maximum allowable error in the learning stage. The
”Z” axis contains the obtained error rates. The best results
were obtained with the 8:5:2 topology and the maximum al-
lowable error in the learning stage of 0.03 (3%). With this
configuration the neural network is able to correctly classify
97.26% =4 0.0232% of the test data, with false positives and
false negatives rates of respectively 2.85% =+ 0.0236% and
1.78% =+ 0.0188% in a confidence interval of 99%.

As can be seen by the comparison with the bottom rows
from table 1, the obtained error rates were lower than those
obtained by [5] and [1] methodologies in the UBIRIS data-
base. However, it must be noted that the last one was not
specially thought for the identification of reflections and this
fact significantly deteriorates its results.

5. Conclusions

Here we presented an overview of the most common ap-
proaches for the identification of noisy data in iris images
and proposed a new methodology based on the extraction
of 5 well known statistical image features together with the
phase congruency and the pixel position. In the classifica-
tion stage we used a fully connected feed-forward neural
network with 1 hidden layer. Experiments led us to con-
clude that our method has a much better performance (only
2.74% error) than the other methods used in the compari-
son. This increase in performance is obtained at the cost of
an increase in the computational effort.
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