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Abstract
The Laplacian learning method has proven effective in classical graph-based semi-
supervised learning, yet its quantum counterpart remains underexplored. This study
systematically evaluates the Laplacian-based quantum semi-supervised learning
(QSSL) approach across four benchmark datasets—Iris,Wine, Breast CancerWiscon-
sin, and Heart Disease. By experimenting with varying qubit counts and entangling
layers, we demonstrate that increased quantum resources do not necessarily lead to
improved performance. Our findings reveal that the effectiveness of the method is
highly sensitive to dataset characteristics, as well as the number of entangling layers.
Optimal configurations, generally featuring moderate entanglement, strike a balance
between model complexity and generalization. These results emphasize the impor-
tance of dataset-specific hyperparameter tuning in quantum semi-supervised learning
frameworks.

Keywords Quantum semi-supervised learning (QSLL) · Quantum graph learning ·
Parametrized quantum circuits · Laplacian QSSL · Entanglement · Test accuracy

1 Introduction

The development of machine learning techniques has undergone significant transfor-
mations over the past few decades, evolving from simple linearmodels to sophisticated
deep learning architectures [1, 2]. Initially, the focus of machine learning was on
supervised learning, where models were trained on fully labeled datasets to pre-
dict outcomes on unseen data [3, 4]. Supervised learning (SL) has been effectively
applied in fields such as biomedical engineering, finance, and Earth and environmen-
tal sciences, providing robust solutions for predictive modeling and data analysis [5].
However, the increasing need to process large volumes of unlabeled data led to the
development of unsupervised learning techniques, which are designed to discover pat-
terns and structures in data without labeled outcomes. This evolution paved the way
for Semi-Supervised Learning (SSL), a hybrid approach that combines the strengths
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of supervised and unsupervised learning to utilize both labeled and unlabeled data,
thereby improving model accuracy and robustness [6]. SSL addresses the challenge of
limited labeled data by leveraging a mix of labeled and unlabeled data during training,
effectively bridging the gap between supervised and unsupervised learning to enhance
model performance [7].

Integrating quantum computing with machine learning represents the latest fron-
tier in this evolutionary journey [8, 9]. One of the most innovative advancements
in quantum machine learning (QML) is quantum graph learning (QGL), which syn-
ergizes quantum computing with graph-based learning methodologies [10, 11]. By
incorporating quantum circuits into graph neural networks (GNNs), QGL offers a
powerful framework to address complex challenges in graph learning. This novel
approach holds promise for various applications, from optimizing network communi-
cations to advancing drug discovery and analysis [12]. Graph-based SSL techniques
represent data points as nodes in a graph, with edges denoting relationships or sim-
ilarities. These methods propagate label information across the graph to infer labels
for unlabeled nodes, often using techniques like label propagation and graph-based
regularization to maintain label consistency among neighboring nodes. A prominent
graph-based SSL method is Laplacian learning, initially detailed by Zhu et al. [13].
While Laplacian learning has demonstrated strong performance in certain scenarios,
it has limitations, particularly in classification tasks with a small number of labels
[14].

This study explores the integration of quantum graph neural networks within the
framework of Laplacian quantum semi-supervised learning (QSSL). It evaluates the
effectiveness of Laplacian QSSL methods across four benchmark datasets: Iris [15],
Wine [16], Breast Cancer Wisconsin Diagnostic [17], and Heart Disease [18]. The
evaluation focuses on systematically investigating how varying the number of qubits
and the number of entangling layers affect test accuracy. Notably, increasing the num-
ber of qubits does not always improve performance; this reflects a complex interplay
of factors. As qubit counts rise, the quantum circuits becomemore complex, leading to
higher error rates and potential performance degradation. A key challenge is the barren
plateau phenomenon, where the cost function’s gradient becomes vanishingly small as
the number of qubits increases. Thismakes optimization difficult, as the gradient of the
cost function decreases exponentially with the number of qubits. Consequently, after
around 14 qubits, a noticeable degradation in the cost function is observed, indicating
significant difficulties in scaling up quantum circuits. This underscores the complexity
of achieving scalable quantum computing.

Moreover, quantum algorithms like the Laplacian methodmay not be optimized for
larger qubits configurations, resulting in a disproportionate increase in computational
burden. The effectiveness of additional qubits also depends on the characteristics of the
dataset, as they may not always align well with the data’s features. Addressing these
challenges requires optimizing quantum algorithms, managing resources efficiently,
and carefully tuning models to balance complexity and performance. Understanding
these dynamics is crucial for advancing quantum machine learning and the bene-
fits of quantum computing. Additionally, the performance of the Laplacian learning
method is highly sensitive to the number of entangling layers, with optimal configu-
rations varying across datasets. Generally, moderate levels of entanglement strike the
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Fig. 1 A quantum circuit architecture for GNNs, including input encoding, variational quantum layers, and
measurement. This hybrid quantum-classical approach aims to enhance GNNs performance in tasks such
as node classification and link prediction (Figure modified from [19])

best balance between model complexity and generalization capability. These findings
highlight the importance of hyperparameter tuning specific to each dataset to achieve
optimal performance in Laplacian learning methods. Fully quantum workflows for
graph-based machine learning hold great promise but are currently limited by the
scalability of quantum algorithms for tasks such as Laplacian computation and label
propagation, as well as the capabilities of existing quantum hardware. Therefore, this
study takes a hybrid approach, utilizing classical graph techniques for efficient and
reliable preprocessing while incorporating quantum-specific enhancements tailored to
the classification stage.

This paper is structured as follows: We commence with a comprehensive overview
of quantum graph learning in Sect. 2, highlighting its relevance to SSL. Subsequently,
we introduce the Laplacian-based quantum semi-supervised learning approach and
its quantum implementation, supported by a detailed mathematical framework and
an explicit algorithm in Sect. 3. Following this, we conduct a thorough examination
and performance analysis of the QSSL methodology, employing various numerical
experiments across diverse datasets in Sect. 4. We then discuss the implications of
modifications to qubit count and the number of entangling layers, analyzing their
effects on test accuracy and quantum entanglementwithin the context of the Laplacian-
based QSSL framework. Finally, we conclude the paper in Sect. 6 by synthesizing the
key findings and contributions of our research (Fig. 1).
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Fig. 2 The quantum circuit used in the paper, detailing its structure and components including entangling
layers, unitary operations, and quantum gates

2 Background: quantum graph learning

In this section, we explore graph-based learning and its application in quantum semi-
supervised learning through QGL. Graph learning focuses on algorithms that analyze
data structured as graphs, with nodes representing entities and edges depicting their
relationships.Graphsmodel complex systems such as social networks, biological inter-
actions, and knowledge bases. A fundamental aspect is understanding graph structures,
where nodes and edges can be directed, undirected, or weighted. GNNs extend tradi-
tional neural networks to handle graph-structured data by incorporating connectivity
through message passing, enabling nodes to aggregate information from neighbors.
Core tasks in graph learning include node classification, link prediction, graph clas-
sification, and clustering [20]. Techniques employed involve spectral methods (e.g.,
Laplacianmatrix), spatialmethods (e.g., graph convolutional networks), randomwalk-
based methods (e.g., DeepWalk, node2vec), and attention mechanisms (e.g., Graph
AttentionNetworks) [21]. Graph learning is applied across various domains, including
social networks for interaction analysis and community detection, biological networks
for understanding protein interactions, and knowledge graphs for enhancing search
engines and recommendation systems [22].

QGL leverages quantum computing to address graph learning tasks and is classi-
fied into three types: quantum computing on graphs, quantum graph representation,
and quantum circuits for GNNs. This paper focuses on quantum circuits for GNNs,
particularly with GNNs, particularly with noisy intermediate-scale quantum (NISQ)
devices, which integrate GNNswith quantummodules to enhance model performance
[23] (Fig. 2).

An advantage of implementing quantum graph neural networks (QGNNs) relies on
leveragingNISQ devices to adapt the structure of graph neural parametrized quantum
circuits (PQCs) [24]. NISQ uses PQCs, a set of gates with free parameters to be tuned
to solve a given task of interest, such as a variational quantum algorithm [25]. Quantum
graph neural network is simulated by PQCs in a way that encodes input graph data
in quantum amplitudes(see Figure 1 [19]). The following section will explain how
quantum graph learning uses the Laplacian method in QSSL for classification.

3 Laplacian-based quantum semi-supervised learning

SSLtechniques serve as a bridge between supervised and unsupervised learning. They
grasp extensive unlabeled datasets alongside a smaller set of labeled data to enhance
the learningmodel. SSL aims to extend the known labels to unlabeled samples through
a suitable smoothing operator.
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3.1 Laplacian learning

Consider a graph G = (V , E) with n nodes. The adjacency matrix A is an n × n
matrix where Ai j represents the weight of the edge between nodes i and j .

The degree matrix D is a diagonal matrix where Dii = ∑
j Ai j , i.e., the degree of

node i .
The normalized Laplacian matrix Lnorm is defined as:

Lnorm = I − D−1/2AD−1/2

where I is the identity matrix.
Let Y be the initial label matrix of size n × c, where n is the number of nodes and

c is the number of classes.
To refine the label matrix F, we use the iterative update rule:

F(t+1) = αLnormF(t) + (1 − α)Y

where α is a weighting factor (typically close to 1) and T is the number of iterations.

3.1.1 Iteration process

1. Initialize the label matrix:

F(0) = Y

2. For each iteration t from 0 to T − 1:

F(t+1) = αLnormF(t) + (1 − α)Y

After T iterations, the refined label matrix is:

F(T )

3.1.2 Quantum implementation

An adjacency matrix is initially generated from a graph in the quantum realm. The
QR decomposition of the adjacency matrix introduces a unique way to encode graph
structure directly into the parameterized quantum circuit. This approach ensures that
the quantum model can exploit graph-specific information, bridging classical graph
theory and quantum processing in a novel manner. By leveraging this integration, we
aim to enhance the classification accuracy compared to standard variational methods.
Both Poisson and Laplacian matrices can be encoded into the quantum state. This
process is referred to as amplitude encoding, where a quantum state |ψ〉 can represent
the graph data:

|ψ〉 =
∑

i

αi |i〉
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with αi being the amplitude corresponding to node i .
Solving the Laplacian for a quantum implementation involves quantum algorithms

such as the HQuantum Phase Estimation (QPE) and the Harrow–Hassidim–Lloyd
(HHL) algorithm. These algorithms provide a way to efficiently solve linear systems
and eigenvalue problems, which are at the core of Laplacian-based methods. For
instance, the HHL algorithm can solve equations of the form Ax = b efficiently,
where A can be the Laplacian matrix L . The algorithm prepares a quantum state cor-
responding to b and then uses quantum operations to find the state corresponding to x .
In practice, the adjacency matrix A, degree matrix D, and consequently the Laplacian
matrix L are encoded into a quantum state. The quantum algorithm then operates on
this state tofind the desired solution f ,which represents the labels’ smoothpropagation
over the graph. By incorporating these mathematical details and quantum implemen-
tation aspects, the paper clarifies how the Laplacian method functions in graph-based
semi-supervised learning. This addition ensures that readers can grasp these methods’
theoretical underpinnings, mathematical formulation, and potential quantum advan-
tages. As one of the semi-supervised learning methods, graph-based methods leverage
the data’s inherent structure, often represented as a graph, to propagate label informa-
tion from labeled to unlabeled data points. These methods construct a graph where
nodes represent data points, and edges capture relationships between them, such as
similarity or proximity. By iteratively propagating labels through the graph, often
guided by the Graph’s structure or properties, graph-based semi-supervised learning
algorithms can effectively generalize known labels to unlabeled samples [13]. Indeed,
a significant portion of graph-based learning methods employs the graph Laplacian as
the smoothing operator to facilitate generalization. However, more sophisticated non-
linear approaches resort to p-Laplacian operators for enhanced performance. These
operators enable a more nuanced representation of the data, better capturing complex
relationships and structures within the graph [26]. You can find more information
about graph learning in two references [27, 28].

In the transition to the quantum realm, an adjacency matrix is initially generated
from a graph. Subsequently, Laplacian matrices can be encoded into the quantum state
or amplitude of the quantum state vector, a process referred to as amplitude encoding
[29, 30].

3.2 An algorithm for Laplacian-based quantum semi-supervised learning

This algorithm integrates quantum computing with Laplacian learning to perform
quantum semi-supervised classification. It utilizes quantum circuits for classifica-
tion and refines predictions using Laplacian smoothing. Additionally, the algorithm
includes parameter tuning and performance evaluation through visualization.
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1: Input: Labeled data (Xl , yl ), unlabeled data Xu , parameters α, T , K , η, L, n, hyperparameter
range Hrange.

2: Output: Predictions ŷu , entanglement entropies Su , performance metrics (Accuracy, Precision,
Recall, F1 Score).

3: Step 1: Data Preprocessing
• Replace missing values in X :

Xi j ← median(X · j ) if Xi j is missing.
• Binarize target labels:

yi =
{
1 if yi > 0,

0 otherwise.
• Standardize features:

Xscaled = X−μ
σ .

• Adjust feature dimensionality to match n qubits.
4: Step 2: Graph Construction

• Construct adjacency matrix A using Gaussian kernel:

Ai j = exp

(

−‖Xi−X j ‖2
2σ2

)

.

• Compute degree matrix D:
Dii = ∑

j Ai j .
• Compute normalized Laplacian matrix Lnorm:

Lnorm = I − D− 1
2 AD− 1

2 .

5: Step 3: Laplacian Learning
• Initialize label matrix Y :

Y =
[

yl
0|Xu |×1

]

.

• Iteratively update labels using Laplacian smoothing:
F(t+1) = αLnormF(t) + (1 − α)Y , t = 1, . . . , T .

• Extract refined labels for unlabeled data:
yu = F(T )[|Xl | :, 0].

6: Step 4: Quantum Circuit Setup
• Construct unitary matrix U via QR decomposition:

U = QR(A).

• Define quantum circuit:
− Angle embedding of features:

AngleEmbedding(Xi ,wires).
− Apply unitary matrix:

QubitUnitary(U ,wires).
− Parameterized quantum layers:

StronglyEntanglingLayers(θ, L,wires).
7: Step 5: Optimization

• Define binary cross-entropy loss:
L(θ) = − 1

N
∑N

i=1
[
yi log(pi ) + (1 − yi ) log(1 − pi )

]
,

where pi = σ(quantum_circuit(Xi , θ)).
• Optimize parameters using gradient descent:

θ(k+1) = θ(k) − η∇θL(θ), k = 1, . . . , K .

8: Step 6: Prediction and Entropy Calculation
• Predict labels for unlabeled data:

ŷi =
{
1 if quantum_circuit(Xi , θ) > 0.5,

0 otherwise.
• Compute entanglement entropy for each quantum state:
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S = −∑
i λi log2(λi ),

where λi are eigenvalues of the reduced density matrix ρ = Trenv(|ψ〉〈ψ |).
9: Step 7: Performance Evaluation

• Compute metrics: Accuracy, Precision, Recall, F1 Score.
10: Step 8: Visualization

• Plot performance metrics and entanglement entropy distributions.
11: Return: Predictions ŷu , entropies Su , performance metrics.

Table 1 Classification
parameters, test accuracy, F1,
recall and precision in four
datasets Iris, Wine, Breast
cancer and Heart Disease

Dataset Laplacian
Test accuracy F1 Recall Precision

Iris 0.822 0.779 0.938 0.666

Wine 0.533 0.515 0.753 0.391

Breast cancer 0.764 0.827 0.904 0.763

Heart disease 0.487 0.474 0.500 0.450

4 Numerical experiments

4.1 Analyses of classification parameters for four datasets

The Laplacian classification method performs well on the Iris and Breast Cancer
datasets, achieving high accuracy, recall, and a balanced F1 Score. Specifically, it
reaches an accuracy of 82.2 and a Recall of 93.8 on the Iris dataset, indicating effective
classification with a trade-off in Precision. On the Breast Cancer dataset, it achieves a
76.4 accuracy and a high F1 Score of 0.827, reflecting strong performance with both
high Recall and Precision.

In contrast, the method shows weaker results for the Wine and Heart Disease
datasets. The Wine dataset has an accuracy of 53.3 and a low precision of 39.1,
resulting in a lower F1 Score of 0.515. The Heart Disease dataset presents the greatest
challenge, with an accuracy of only 48.7, a low precision of 45.0, and a modest recall
of 50.0, leading to the lowest F1 score of 0.474.

Overall, the Laplacian method is effective for simpler datasets like Iris and Breast
Cancer. However, it struggles with more complex datasets such as Wine and Heart
Disease, showing lower accuracy and higher rates of false positives (Table 1).

4.2 Analyses of classification parameters by changing qubits

The performance of the Laplacian method across different datasets and qubit configu-
rations reveals several key insights. For the Iris dataset, the model performs optimally
with four qubits, achieving a test accuracy of 0.822, an F1 score of 0.779, a recall
of 0.938, and a precision of 0.666. In contrast, increasing the number of qubits to
8, 12, and 14 significantly degrades the model’s performance, with accuracy drop-
ping to 0.352 and precision falling to 0.263 for the 14-qubit configuration, indicating
diminishing returns or inefficiency with additional quantum resources.
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Similarly, for theWine dataset, the Laplacianmethod yields its highest test accuracy
of 0.533 and an F1 score of 0.515 with four qubits. As qubits increase, performance
deteriorates, with the 14-qubit configuration showing the lowest accuracy at 0.460 and
an F1 Score of 0.313. This suggests that the method struggles to leverage additional
qubits effectively for this dataset.

For the Breast Cancer dataset, the Laplacian method also performs best with four
qubits, achieving a test accuracy of 0.764 and an F1 score of 0.827.While performance
remains relatively high with eight qubits, accuracy and F1 Score drop significantly
with 12 and 14 qubits, reaching 0.447 and 0.264, respectively. This decline suggests
that beyond a certain point, the added complexity of more qubits hampers the model’s
generalization capability.

In the Heart Disease dataset, the Laplacian method achieves the best results with 4
qubits, with a test accuracy of 0.487 and an F1 Score of 0.474. Increasing the number
of qubits leads to diminishing returns, with minimal improvement at 12 and 14 qubits,
underscoring inefficiency in using additional quantum resources for this dataset.

These results demonstrate that increasing the number of qubits does not consis-
tently improve the Laplacian method’s performance. The optimal qubit count varies
by dataset, and additional qubits often introduce complexity without yielding bet-
ter performance. This observation underscores the need for careful tuning of quantum
resources, suggesting that fewer qubitsmay bemore effective in certain cases. As qubit
counts increase, quantum circuits become more intricate, potentially leading to higher
error rates and degraded performance. Furthermore, certain quantum algorithms like
the Laplacian method may not be well-suited to larger qubit configurations, increas-
ing computational burdens disproportionately. The characteristics of each dataset also
influence performance, as additional qubits may not align well with the data’s features.
Thus, optimizing quantum algorithms, managing resources efficiently, and balancing
complexity with performance are crucial for advancing quantum machine learning
(Fig. 3, Tables 2, 3, 4).

4.3 Analysis of entanglement and test accuracy by changing entangling layers

Studying entanglement as a fundamental quantum feature of our quantum systems
is precious and promising in this paper. By investigating the impact of entangling
layers on the entanglement properties of the systems and classification parameters,
such as test accuracy, we can gain deeper insights into the mechanisms that drive the
performance of quantumalgorithms. This understanding can inform the design ofmore
effective quantum circuits and enhance our ability to utilize quantum entanglement for
improved computational tasks. The table presents an analysis of entanglement based
on the number of entangling layers in the quantum circuit, using entanglement entropy
as the metric. Entanglement is generated by combining different quantum logics, such
as CNOT with Z gates. The derivation of entanglement entropy starts with a quantum
system described by a density matrix ρ, encompassing multiple subsystems A and
B. To quantify the entanglement between subsystem A and the rest of the system B,
we compute the reduced density matrix ρA by tracing out the degrees of freedom of
subsystem B from ρ. The entanglement entropy SA for subsystem A is then defined
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Fig. 3 Line chart showing the change in test accuracy with increasing qubits for each dataset. Each line
represents a different dataset

Table 2 Quantification of classification parameters, test accuracy, F1 score, recall, and precision for the
Laplacian method across four datasets (Iris, Wine, Breast Cancer, Heart Disease) with varying qubits (4, 8,
12, 14)

Dataset-qubit Laplacian
Test accuracy F1 Recall Precision

Iris-4 0.822 0.779 0.938 0.666

Iris-8 0.352 0.350 0.525 0.350

Iris-12 0.352 0.350 0.525 0.263

Iris-14 0.352 0.350 0.525 0.263

Wine-4 0.533 0.515 0.753 0.391

Wine-8 0.523 0.486 0.687 0.376

Wine-12 0.461 0.453 0.679 0.340

Wine-14 0.460 0.313 0.383 0.264

Breast Cancer-4 0.764 0.827 0.904 0.763

Breast Cancer-8 0.778 0.837 0.909 0.776

Breast Cancer-12 0.447 0.284 0.383 0.572

Breast Cancer-14 0.447 0.264 0.383 0.568

Heart Disease-4 0.487 0.474 0.500 0.450

Heart Disease-8 0.456 0.288 0.340 0.250

Heart Disease-12 0.447 0.264 0.383 0.540

Heart Disease-14 0.447 0.264 0.383 0.539

It illustrates how the method performs as quantum resources increase, highlighting the highest metrics for
each dataset and qubits configuration
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Table 3 Classification metrics for semi-supervised learning methods (Iris Dataset)

Method Accuracy Precision Recall F1 Score

Self-training 0.905 0.910 0.905 0.907

Co-training 0.895 0.900 0.895 0.897

Label propagation 0.910 0.915 0.910 0.912

Label spreading 0.900 0.905 0.900 0.902

S3VM 0.880 0.885 0.880 0.882

using the von Neumann entropy formula:

SA = −Tr(ρA log ρA)

which measures the amount of entanglement or quantum correlations between A and
B. This entropy is a fundamental measure in quantum information theory, providing
insights into the structure and distribution of quantumentanglementwithinmultipartite
quantum systems.

4.3.1 Measure of entanglement

In quantum computing, accurately measuring entanglement is essential for evaluating
the coherence and correlations among qubits within a quantum circuit. Variousmetrics
are employed for this purpose, each suited to different quantum systems and contexts:

Entanglement entropy This measure evaluates the entropy of the reduced density
matrix of a subsystem within an entangled state. It is particularly useful for assessing
the overall entanglement within a quantum system. Entanglement entropy has been
selected for our analysis of the entanglement measurements discussed. This measure
is preferred because of its ability to provide a comprehensive quantification of the
entanglement within the entire quantum system and specific subsystems. This choice
is integral to understanding the extent and distribution of entanglement among the
qubits in our quantum circuit.

4.4 Analysis of the impact of entangling layers on entanglement entropy and test
accuracy

The table evaluates the impact of increasing the number of entangling layers on entan-
glement entropy and test accuracy across four datasets (Iris, Wine, Breast Cancer, and
Heart Disease). Below is a detailed analysis of the results, focusing on the interplay
between entanglement entropy and test accuracy.

Iris dataset The Iris dataset exhibits a nuanced relationship between the number
of entangling layers and model performance. With five layers, the model achieves
a test accuracy of 0.821 and an entanglement entropy of 0.152, indicating a strong
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Fig. 4 The scatter plot shows the relationship between test accuracy and entanglement entropy for each
dataset. There does not appear to be a strong correlation between entanglement entropy and test accuracy
across the datasets

performance with low complexity. Increasing the layers to 10 results in a substantial
rise in entanglement entropy to 0.264 and a sharp drop in accuracy to 0.225, suggesting
overfitting or excessive complexity (Fig. 4).

However, at 15 layers, themodel’s performance partially recovers, with an accuracy
of 0.765 and a reduced entropy of 0.155. The best performance is observed with 20
layers, where the model achieves its highest accuracy of 0.882 and the lowest entropy
of 0.149. This indicates an optimal balance between model complexity and general-
ization. Further increasing the layers to 25 and 30 results in fluctuating entanglement
entropy (0.205 and 0.172, respectively) and a decline in accuracy (0.806 and 0.700),
highlighting diminishing returns and potential overfitting with excessive layers.

Wine dataset The Wine dataset shows variability in performance with changing
entangling layers. The model achieves moderate accuracy (0.537) and low entropy
(0.135), starting with five layers. Doubling the layers to 10 leads to a significant
increase in entropy (0.185) and a drastic drop in accuracy to 0.229, indicating over-
fitting. At 15 layers, the entropy peaks at 0.291 while accuracy slightly improves to
0.307. Optimal performance is observed with 20 layers, achieving the highest accu-
racy of 0.645 and the lowest entropy of 0.124. This suggests that moderate entangling
layers facilitate effective learning for the Wine dataset. Increasing the layers to 25
and 30 results in a mixed performance, with entropy values of 0.190 and 0.207 and
accuracy dropping to 0.640 and 0.416, respectively. This trend highlights the adverse
impact of excessive complexity.

Breast cancer dataset The optimal number of entangling layers for theBreast Cancer
dataset appears minimal. With five layers, the model achieves its highest accuracy
of 0.764 and an entanglement entropy of 0.202. Increasing the layers to 10 and 15
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reduces accuracy (0.580 and 0.431) and lower entanglement entropy (0.182 and 0.130),
indicating that additional layers do not contribute positively. At 20 layers, entropy rises
to 0.218 while accuracy drops to 0.354, further confirming the inefficacy of increased
layers. A slight recovery is observed with 25 layers, where entropy is minimized to
0.114, and accuracy improves to 0.662. However, increasing to 30 layers results in
higher entropy (0.204) and lower accuracy (0.382), suggesting overfitting and reduced
model performance with excessive layers.

Heart disease dataset The Heart Disease dataset demonstrates a complex response
to the number of entangling layers. Initially, with five layers, the model achieves
moderate performance with an accuracy of 0.491 and an entropy of 0.155. Increasing
to 10 layers, entropy rises to 0.223, and accuracy decreases to 0.433, indicating a
negative impact of additional layers. At 15 layers, entropy slightly decreases to 0.190,
with aminor improvement in accuracy to 0.446. The optimal configuration is observed
at 20 layers, where the model achieves the highest accuracy of 0.584 and the lowest
entropy of 0.182, indicating an effective balance between complexity and performance.
Further increasing the layers to 25 and 30 results in higher entropy (0.233 and 0.248)
and fluctuating accuracy (0.551 and 0.451), underscoring the detrimental effect of
excessive layers.

4.4.1 General observation

Relationship between entanglement entropy and test accuracy The data indicate
a nonlinear and dataset-dependent relationship between entanglement entropy and
test accuracy. While moderate entanglement often correlates with a higher accu-
racy, no consistent trend exists across all datasets. This suggests that the optimal
balance between entanglement entropy and model performance must be determined
empirically for each dataset.

Optimal layer configuration The optimal number of entangling layers varies signif-
icantly between datasets. For the Iris and Heart Disease datasets, 20 layers provided
the best performance, yielding the highest test accuracy with relatively low entangle-
ment entropy. In contrast, the Wine dataset performed best with 20 layers, but the
Breast Cancer dataset achieved its highest accuracy with only five layers. This vari-
ability underscores the necessity of dataset-specific hyperparameter tuning to achieve
optimal results.

Impact of excessive layers Increasing the number of entangling layers beyond an
optimal point generally leads to overfitting. This is evidenced by a rise in entangle-
ment entropy and a corresponding drop in test accuracy. For instance, test accuracy
significantly decreased in the Iris and Wine datasets when the number of layers
exceeded20. Similarly, theBreastCancer andHeartDisease datasets exhibited reduced
accuracy with excessive layers. These findings highlight the importance of avoiding
over-complexity in model design.
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Moderate entanglement levels Across most datasets, moderate levels of entangle-
mentwere associatedwith better performance. This suggests that while some degree of
entanglement is beneficial for capturing complexdata patterns, excessive entanglement
can hinder the model’s ability to generalize, leading to decreased test accuracy.

4.4.2 Summary

The evaluation reveals that the Laplacian learning method’s performance is highly
sensitive to the number of entangling layers, with optimal configurations varying
across datasets. Moderate entanglement levels generally balance model complexity
and generalization capability best. These findings emphasize the critical importance
of hyperparameter tuning tailored to each dataset to achieve optimal performance in
Laplacian learning methods.

5 Discussion

5.1 Challenges of scaling quantum resources

Our results reveal that increasing quantum resources, such as qubit counts and entan-
gling layers, does not inherently lead to improved performance. This counterintuitive
finding can be attributed to several interrelated factors. First, the barren plateau phe-
nomenon becomes more pronounced as the number of qubits increases. In this regime,
the gradients of the cost function diminish exponentially, making the optimization
process significantly more challenging. Although the quantum model becomes the-
oretically more expressive, it often struggles to converge effectively during training,
particularly in larger quantum systems.

Second, noise accumulation in NISQ devices exacerbates the issue. As the com-
plexity of quantum circuits grows with the addition of qubits and layers, error rates
increase, which significantly affects computational fidelity. This is particularly prob-
lematic in current quantum hardware, where gate fidelities are not yet sufficient to
fully mitigate these errors.

Third, the risk of overfitting escalates with larger quantum circuits, especially for
simpler datasets. In such cases, the model tends to learn noise or irrelevant features
instead of capturing the underlying data structure, resulting in a decline in general-
ization performance. For example, our experiments on the Iris dataset showed that
increasing qubits beyond the optimal configuration resulted in a significant drop in
test accuracy.

Lastly, the dataset-specific nature of quantum learning plays a crucial role. Factors
such as dimensionality, class separability, and graph structure determine how effec-
tively additional quantum resources can be utilized. In our study, moderate quantum
configurations often provided the best balance between model complexity and gen-
eralization. For instance, while the Breast Cancer dataset benefited from relatively
shallow circuits, the Iris dataset required a higher number of entangling layers to
achieve optimal accuracy.
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5.2 Generalization of findings

Although this study focuses on the Laplacian-based quantum semi-supervised learn-
ing (QSSL) framework, the challenges observed with scaling quantum resources are
likely applicable to other quantum machine learning methods. Variational quantum
algorithms and hybrid quantum-classical frameworks also encounter similar issues,
including barren plateaus and noise sensitivity. Our findings emphasize the impor-
tance of aligning quantummodel design with the specific characteristics of the dataset
and the limitations of the hardware. In particular, the interplay between entanglement
and circuit depth emerges as a critical factor. While moderate levels of entangle-
ment are often beneficial for capturing complex data patterns, excessive entanglement
can introduce unnecessary complexity and hinder performance. These results suggest
that future research should prioritize optimizing quantum resource configurations to
achieve a balance between expressiveness and generalization.

5.3 Future directions

To address the challenges identified, several avenues for future research are recom-
mended. Advanced initialization techniques could be explored to mitigate barren
plateaus and improve optimization. Additionally, error mitigation strategies tailored to
NISQdevices could reduce the impact of noise in larger circuits. Finally, extending this
work to a broader range of datasetswith varying structural properties could provide fur-
ther insights into the generalizability of these findings. Futurework should also explore
fully quantum workflows for graph-based learning tasks. This includes developing
quantum algorithms for Laplacian computation, label propagation, and spectral graph
techniques. Integrating approaches such as quantum kernel estimation or quantum
graph embeddings could enable novel hybrid or fully quantum paradigms, addressing
the preprocessing steps that currently rely on classical methods. These advancements
would complement the findings of this study, pushing the boundaries of quantum
machine learning. Our current results demonstrate the potential of Laplacian-based
quantum semi-supervised learning (QSSL); however, performance trends are heavily
influenced by design choices, such as the parametrized quantum circuit (PQC) ansatz
and the Gaussian adjacency kernel. To further validate and generalize these results,
future work will explore alternative ansatz designs, including hardware-efficient and
problem-specific circuits. Additionally, the exploration of diverse kernel functions,
such as polynomial and exponential kernels, will be undertaken to enhance versatility.
To ensure the robustness of the proposed method, comprehensive statistical analyses
will be performed across various datasets and configurations, paving the way for more
effective and scalable quantum machine learning techniques.

6 Conclusion

In conclusion, increasing the number of qubits does not inherently enhance quantum
computing performance, as it introduces greater complexity and higher error rates.
The scalability of quantum algorithms, such as the Laplacian-based method, is often
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constrained by the disproportionate computational burden associated with additional
qubits. Effective alignment of qubits with dataset features remains critical, highlight-
ing the importance of optimization, resource management, and hyperparameter tuning
in quantummachine learning. The Laplacian learning method demonstrates particular
sensitivity to the number of entanglement layers, withmoderate levels of entanglement
striking an optimal balance between computational complexity and model accuracy.
A notable outcome of this study is achieving near-classical accuracy on the Iris dataset
using 20 entangling layers, showcasing the potential of tailored quantum parameter-
ization. Customizing these parameters to specific datasets is essential for optimizing
performance and unlocking the full potential of quantum machine learning. While the
Laplacian-based quantum semi-supervised learning (QSSL)method shows significant
promise, its scalability and generalizability remain key challenges. Future researchwill
focus on addressing these limitations by exploring alternative parametrized quantum
circuit (PQC) designs, integrating diverse kernel functions, and leveraging advanced
optimization techniques to mitigate trainability issues. By conducting rigorous statis-
tical analyses and validating scalability, we aim to further enhance the robustness and
applicability of this approach, paving theway formore effective quantumclassification
techniques capable of solving classical problems efficiently.
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